论文标题

对互联车辆的深入增强学习的合作感

Cooperative Perception with Deep Reinforcement Learning for Connected Vehicles

论文作者

Aoki, Shunsuke, Higuchi, Takamasa, Altintas, Onur

论文摘要

基于传感器对车辆的看法变得越来越普遍,对于提高道路安全性很重要。自主驾驶系统使用摄像头,激光雷达和雷达来检测周围的物体,而人类驱动的车辆则使用它们来帮助驾驶员。但是,单个车辆的环境看法对覆盖范围和/或检测准确性有限制。例如,车辆无法检测到其他移动/静态障碍物遮住的物体。在本文中,我们提出了一种合作感知方案,并具有深入的增强学习,以提高周围物体的检测准确性。通过使用深度强化学习来选择传输数据,我们的方案可以减轻车辆通信网络中的网络负载并增强通信可靠性。为了设计,测试和验证合作感知方案,我们开发了合作和智能的车辆模拟(CIVS)平台,该平台集成了三个软件组件:交通模拟器,车辆模拟器和对象分类器。我们评估我们的方案减少了数据包损失,因此与基线协议相比,将检测准确性提高了12%。

Sensor-based perception on vehicles are becoming prevalent and important to enhance the road safety. Autonomous driving systems use cameras, LiDAR, and radar to detect surrounding objects, while human-driven vehicles use them to assist the driver. However, the environmental perception by individual vehicles has the limitations on coverage and/or detection accuracy. For example, a vehicle cannot detect objects occluded by other moving/static obstacles. In this paper, we present a cooperative perception scheme with deep reinforcement learning to enhance the detection accuracy for the surrounding objects. By using the deep reinforcement learning to select the data to transmit, our scheme mitigates the network load in vehicular communication networks and enhances the communication reliability. To design, test, and verify the cooperative perception scheme, we develop a Cooperative & Intelligent Vehicle Simulation (CIVS) Platform, which integrates three software components: traffic simulator, vehicle simulator, and object classifier. We evaluate that our scheme decreases packet loss and thereby increases the detection accuracy by up to 12%, compared to the baseline protocol.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源