论文标题

通过BC $ _3 $ nanogap在BC中通过DNA核苷酸的电子传输用于快速DNA测序

Electronic Transport through DNA Nucleotides in a BC$_3$ Nanogap for Rapid DNA Sequencing

论文作者

Kumawat, Rameshwar L., Garg, Priyanka, Bhattacharyya, Gargee, Pathak, Biswarup

论文摘要

最近,固态纳米孔纳米胶质对超快DNA测序产生了很大的兴趣。但是,要减慢DNA易位过程以实现单个核碱基分辨率存在挑战。已经使用了一系列计算工具来研究多种模型系统中的DNA易位。为这种人类基因组测序找到有效的纳米电极的前景可能提供了一种完全创新的预防保健方式。在这里,我们研究了基于密度功能理论和非平衡绿色果岭功能方法的基于碳化氢BC $ _3 $ _3 $ _3 $ _3 $的性能。由于核苷酸方向和横向位置的变化,发现不同施加偏置电压下的电流变化很显着,甚至可能胜过石墨烯。与石墨烯电极相比,BC $ _3 $电极计算的相对较低的交互能量表明BC $ _3 $是用于DNA测序的更好的纳米电极。从我们的结果中,我们发现,在0.3至0.4 V偏置区域中所有四个核苷酸的唯一识别。此外,四个核苷酸中的每个核苷酸中的每一个都显示出一个差异的一个顺序,这使得可以独特地识别所有四个核苷酸。因此,我们认为基于BC $ _3 $的纳米电极可能用于开发用于DNA测序的实用纳米电视。

Recently solid state nanopores nanogaps have generated a lot of interest in ultrafast DNA sequencing. However, there are challenges to slow down the DNA translocation process to achieve a single nucleobase resolution. A series of computational tools have been used in an attempt to study the DNA translocations in several model systems. The prospect of finding an efficient nanoelectrode for such human genome sequencing might offer an entirely innovative way of preventive health care. Here, we have studied the performance of a boron carbide BC$_3$ based nanogap setup for DNA sequencing using the density functional theory and non equilibrium Greens function-based methods. The electric current variations under different applied bias voltages are found to be significant due to changes in the nucleotides orientation and lateral position and can even outperform graphene. Computed relatively lower interaction energy for BC$_3$ electrodes compared to graphene electrodes indicates that BC$_3$ is a better nanoelectrode for DNA sequencing. From our results, we have found that the unique identification of all four nucleotides possible in the 0.3 to 0.4 V bias region. Furthermore, each of the four nucleotides exhibits around one order of current difference, which makes it possible to identify all four nucleotides uniquely. Thus, we believe that BC$_3$ based nanoelectrodes may be utilized toward the development of a practical nanodevice for DNA sequencing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源