论文标题
稳定器的无弱绿素元素方法,具有两个命令的超熟悉度
A stabilizer free weak Galerkin element method with supercloseness of order two
论文作者
论文摘要
弱伽勒金(WG)有限元方法是一种用于求解部分微分方程的有效且灵活的一般数值技术。引入了一种简单的弱绿素有限元方法,以解决二阶椭圆问题。首先,我们证明了该WG元素不再需要稳定器。然后,我们证明了WG有限元解决方案的订单二的超级序列。数值结果证实了理论
The weak Galerkin (WG) finite element method is an effective and flexible general numerical techniques for solving partial differential equations. A simple weak Galerkin finite element method is introduced for second order elliptic problems. First we have proved that stabilizers are no longer needed for this WG element. Then we have proved the supercloseness of order two for the WG finite element solution. The numerical results confirm the theory