论文标题
旋转光谱主成分分析(RSPCA),用于识别气候系统中变异性的动态模式
Rotated spectral principal component analysis (rsPCA) for identifying dynamical modes of variability in climate systems
论文作者
论文摘要
与经典PCA相比,光谱PCA(SPCA)具有识别特定频带内有组织的时空模式并提取动态模式的优势。但是,PC的频率分辨率和鲁棒性之间的不可避免的权衡导致对噪声和过度拟合的敏感性,这限制了SPCA结果的解释。我们在此提出了使用连续的Morlet小波作为良好频率分辨率的跨光谱矩阵的稳健估计器,在此提出了SPCA的简单非参数实现。为了提高在同一频带中存在几种相似振幅模式时的结果的解释性,我们提出了特征向量的旋转,以优化相域中的空间平滑度。开发的方法称为旋转光谱PCA(RSPCA),在模拟传播波的合成数据上进行了测试,即使数据中的噪声很高,也会显示出令人印象深刻的性能。该方法应用于太平洋上的历史海面温度(SST)时间序列,可准确捕获厄尔尼诺 - 南方振荡(ENSO)低频(2至7年的周期性)。在高频(次年周期性)下,确定了几种相似振幅的热带模式,RSPCA成功地揭示了潜在模式,从而揭示了具有强大的繁殖动力学的空间相干模式。较高频率时空气候模式的识别有望有望季节性至中期预测以及对气候模型的诊断分析。
Spectral PCA (sPCA), in contrast to classical PCA, offers the advantage of identifying organized spatio-temporal patterns within specific frequency bands and extracting dynamical modes. However, the unavoidable tradeoff between frequency resolution and robustness of the PCs leads to high sensitivity to noise and overfitting, which limits the interpretation of the sPCA results. We propose herein a simple non-parametric implementation of the sPCA using the continuous analytic Morlet wavelet as a robust estimator of the cross-spectral matrices with good frequency resolution. To improve the interpretability of the results when several modes of similar amplitude exist within the same frequency band, we propose a rotation of eigenvectors that optimizes the spatial smoothness in the phase domain. The developed method, called rotated spectral PCA (rsPCA), is tested on synthetic data simulating propagating waves and shows impressive performance even with high levels of noise in the data. Applied to historical sea surface temperature (SST) time series over the Pacific Ocean, the method accurately captures the El Niño-Southern Oscillation (ENSO) at low frequency (2 to 7 years periodicity). At high frequencies (sub-annual periodicity), at which several extratropical patterns of similar amplitude are identified, the rsPCA successfully unmixes the underlying modes, revealing spatially coherent patterns with robust propagation dynamics. Identification of higher frequency space-time climate modes holds promise for seasonal to subseasonal prediction and for diagnostic analysis of climate models.