论文标题

最佳阈值挂锁系统

Optimal Threshold Padlock Systems

论文作者

Dreier, Jannik, Dumas, Jean-Guillaume, Lafourcade, Pascal, Robert, Léo

论文摘要

1968年,刘描述了在共享秘密项目中确保文件的问题。在一个示例中,需要在11位参与的科学家中至少有六个,以打开确保秘密文件的锁。沙米尔(Shamir)在1979年通过设计了基于拉格兰奇(Lagrange)插值的高效$ k $ out-n $ n $ necret共享计划,提出了对这个物理问题的数学解决方案。 Liu和Shamir还声​​称,使用物理锁的最小解决方案在参与者的数量中显然是不切实际的和指数的。 在本文中,我们在其主张中放松了一些隐含的假设,并提出了使用物理挂锁的LIU问题的最佳物理解决方案,但挂锁的数量不大于参与者的数量。 然后,我们表明,在$ k \ geq {\ sqrt {2n}} $的情况下,任何设备都能为$ k $ -n $ n $ threshold Padlock Systems做得更好,这在Liu的示例中尤其是正确的。 更一般而言,我们得出实现任何阈值系统所需的界限,并证明了$ \ Mathcal {o} {\ log(n)} $ padlocks的下限,以大于$ 2 $的任何阈值。例如,我们提出了一个最佳方案,该方案以$ 2 $ n $ n $阈值系统的价格达到,并且需要少于$ 2 \ log_2(n)$ padlocks。 我们还讨论了更复杂的访问结构,一种包装技术和其他sublinear实现,例如算法,以生成$ 3 $ -Out-of-of-of-n $ n $ Systems,其$ 2.5 \ sqrt {n} $ padlocks。 最后,我们给出了一个算法构建$ k $ -out-of-n $ threshold Padlock Systems,只有$ \ Mathcal {o} {\ log(n)^{k-1}} $ padlocks。 除了物理世界外,我们的结果还表明,可以在小领域实施秘密共享。

In 1968, Liu described the problem of securing documents in a shared secret project. In an example, at least six out of eleven participating scientists need to be present to open the lock securing the secret documents. Shamir proposed a mathematical solution to this physical problem in 1979, by designing an efficient $k$-out-of-$n$ secret sharing scheme based on Lagrange's interpolation. Liu and Shamir also claimed that the minimal solution using physical locks is clearly impractical and exponential in the number of participants. In this paper we relax some implicit assumptions in their claim and propose an optimal physical solution to the problem of Liu that uses physical padlocks, but the number of padlocks is not greater than the number of participants. Then, we show that no device can do better for $k$-out-of-$n$ threshold padlock systems as soon as $k\geq{\sqrt{2n}}$, which holds true in particular for Liu's example. More generally, we derive bounds required to implement any threshold system and prove a lower bound of $\mathcal{O}{\log(n)}$ padlocks for any threshold larger than $2$. For instance we propose an optimal scheme reaching that bound for $2$-out-of-$n$ threshold systems and requiring less than $2\log_2(n)$ padlocks. We also discuss more complex access structures, a wrapping technique, and other sublinear realizations like an algorithm to generate $3$-out-of-$n$ systems with $2.5\sqrt{n}$ padlocks. Finally we give an algorithm building $k$-out-of-$n$ threshold padlock systems with only $\mathcal{O}{\log(n)^{k-1}}$ padlocks. Apart from the physical world, our results also show that it is possible to implement secret sharing over small fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源