论文标题

对点云过滤的深度保存正常估计

Deep Feature-preserving Normal Estimation for Point Cloud Filtering

论文作者

Lu, Dening, Lu, Xuequan, Sun, Yangxing, Wang, Jun

论文摘要

点云过滤是其中的主要瓶颈在保留几何特征的同时消除噪声(离群值),这是3D字段中的一个基本问题。涉及正常估计和位置更新的两步方案已显示出有希望的结果。然而,当前的正常估计方法在内,包括优化的方法和深度学习方法通​​常具有有限的自动化或无法保留尖锐的功能。在本文中,我们提出了一种具有保留几何特征点云滤波的新型特征的正常估计方法。这是一种学习方法,因此可以实现正常人的自动预测。对于训练阶段,我们首先生成基于补丁的样本,然后将其馈送到分类网络以对特征和非功能点进行分类。我们最终分别训练特征和非功能点的样本,以取得不错的结果。关于测试,给定嘈杂的点云,可以自动估计其正态。对于进一步的点云滤波,我们几次迭代上述正常估计和当前位置更新算法。各种实验表明,就质量和数量而言,我们的方法优于最先进的正常估计方法和点云过滤技术。

Point cloud filtering, the main bottleneck of which is removing noise (outliers) while preserving geometric features, is a fundamental problem in 3D field. The two-step schemes involving normal estimation and position update have been shown to produce promising results. Nevertheless, the current normal estimation methods including optimization ones and deep learning ones, often either have limited automation or cannot preserve sharp features. In this paper, we propose a novel feature-preserving normal estimation method for point cloud filtering with preserving geometric features. It is a learning method and thus achieves automatic prediction for normals. For training phase, we first generate patch based samples which are then fed to a classification network to classify feature and non-feature points. We finally train the samples of feature and non-feature points separately, to achieve decent results. Regarding testing, given a noisy point cloud, its normals can be automatically estimated. For further point cloud filtering, we iterate the above normal estimation and a current position update algorithm for a few times. Various experiments demonstrate that our method outperforms state-of-the-art normal estimation methods and point cloud filtering techniques, in terms of both quality and quantity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源