论文标题

Digraphs的部分lovás-vectors之间不相等相关的相互依存关系

Interdependencies of less-equal-relations between partial Lovász-vectors of digraphs

论文作者

Campo, Frank a

论文摘要

对于Digraphs $ g $和$ h $,让$ {\ cal H}(g,h)$是从$ g $到$ h $的所有同构的集合,让$ {\ cal s}(g,h)$是这些同构的子集,这些同构的子集中映射了$ g $ g $ in $ g $ in $ h $ h $ h $ h $ h $ h $。从较早的调查中,我们知道,对于某些digraphs $ r $和$ s $,关系“ $ \#{\ cal s}(g,g,r)\ leq \#{\ cal s}(\ cal s}(g,s)$ for ALL $ g \ in \ Mathfrak in \ Mathfrak {d} h}(g,s)$ for \ in \ mathfrak {d}'$'',其中$ \ mathfrak {d}'$是Digraphs的子类。现在,我们要求逆:digraphs $ r,s $以及digraphs的$ \ mathfrak {d}'$ of Digraphs的$ dik“ $ \#” s}(g,r)\ leq \#{\ cal s}(g,s)$ for \ in \ mathfrak in \ mathfrak {d}'$“?”?我们证明了对Digraph类的三种组合的含义。特别是,与所有平面posets $ g $相对于所有平面posets $ r,s $的关系是等效的。

For digraphs $G$ and $H$, let ${\cal H}(G,H)$ be the set of all homomorphisms from $G$ to $H$, and let ${\cal S}(G,H)$ be the subset of those homomorphisms mapping all proper arcs in $G$ to proper arcs in $H$. From an earlier investigation we know that for certain digraphs $R$ and $S$, the relation "$\# {\cal S}(G,R) \leq \# {\cal S}(G,S)$ for all $G \in \mathfrak{ D }'$" implies "$\# {\cal H}(G,R) \leq \# {\cal H}(G,S)$ for all $G \in \mathfrak{ D }'$", where $\mathfrak{ D }'$ is a subclass of digraphs. Now we ask for the inverse: For which digraphs $R, S$ and which subclasses $\mathfrak{ D }'$ of digraphs does "$\# {\cal H}(G,R) \leq \# {\cal H}(G,S)$ for all $G \in \mathfrak{ D }'$" imply "$\# {\cal S}(G,R) \leq \# {\cal S}(G,S)$ for all $G \in \mathfrak{ D }'$"? We prove this implication for three combinations of digraph classes. In particular, the relations are equivalent for all flat posets $R, S$ with respect to all flat posets $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源