论文标题
具有部分识别的微观经济学
Microeconometrics with Partial Identification
论文作者
论文摘要
本章回顾了有关部分识别的微观经济学文献,重点介绍了过去三十年的发展。提出的主题表明,即使没有准确揭示它,可用的数据与可靠维护的假设相结合也可能产生有关感兴趣参数的大量信息。特别注意与与之相关的一些挑战,并提出的一些解决方案,(1)获得可观的参数值的可易于表征,鉴于可用的数据和维护的假设; (2)估计这套值; (3)对假设进行测试并做出信心陈述。本章回顾了部分识别分析的进步,这既适用于在没有模型的情况下定义明确的概率分布的学习(功能),又适用于仅在特定模型中明确定义的学习参数。突出了一个简单的组织原则:识别问题的来源通常可以追溯到与可用数据并维护的假设一致的随机变量集合。该集合可能是观察到的数据的一部分,也可能是模型含义。无论哪种情况,都可以将其形式化为随机集。然后,随机集理论被用作数学框架,以统一许多特殊结果,并产生一种进行部分识别分析的一般方法。
This chapter reviews the microeconometrics literature on partial identification, focusing on the developments of the last thirty years. The topics presented illustrate that the available data combined with credible maintained assumptions may yield much information about a parameter of interest, even if they do not reveal it exactly. Special attention is devoted to discussing the challenges associated with, and some of the solutions put forward to, (1) obtain a tractable characterization of the values for the parameters of interest which are observationally equivalent, given the available data and maintained assumptions; (2) estimate this set of values; (3) conduct test of hypotheses and make confidence statements. The chapter reviews advances in partial identification analysis both as applied to learning (functionals of) probability distributions that are well-defined in the absence of models, as well as to learning parameters that are well-defined only in the context of particular models. A simple organizing principle is highlighted: the source of the identification problem can often be traced to a collection of random variables that are consistent with the available data and maintained assumptions. This collection may be part of the observed data or be a model implication. In either case, it can be formalized as a random set. Random set theory is then used as a mathematical framework to unify a number of special results and produce a general methodology to carry out partial identification analysis.