论文标题

Fréchet距离,不确定曲线

Fréchet Distance for Uncertain Curves

论文作者

Buchin, Kevin, Fan, Chenglin, Löffler, Maarten, Popov, Aleksandr, Raichel, Benjamin, Roeloffzen, Marcel

论文摘要

在本文中,我们研究了多种变体,用于计算不确定曲线之间(离散和连续的)fréchet距离。我们将不确定曲线定义为一个不确定性区域的序列,每个区域都是磁盘,线段或一组点。曲线的实现是一个从每个区域连接一个点的多线线。考虑到不确定的曲线和第二个(某些或不确定的)曲线,我们试图计算上限和上限的Fréchet距离,这是对曲线的任何实现的最小和最大Fréchet距离。 我们证明,在多个不确定性模型中,上限和下限问题对于连续的Fréchet距离都是NP障碍,并且对于离散的FRéchet距离而言,上限问题仍然很难。相反,可以在多项式时间内计算下界(离散和连续的)fréchet距离。此外,我们表明,当将不确定性区域建模为点集或线段时,计算预期离散的fréchet距离是#p-hard。该结构还扩展到显示#p-hardness,用于计算区域作为点集建模时连续的Fréchet距离。 在正面,我们认为在任何恒定尺寸中,当$δ/δ$是多项式界限时,下界问题都有一个FPTA,其中$δ$是fréchet的距离,而$δ$界定了该区域的直径。然后,我们认为,当区域为凸面并且大约$δ$分配时,决策问题有接近线性的3次应征。最后,我们还使用sakoe-chiba时间段研究了设置,在此限制了两条曲线之间的比对,并为上限和预期离散和连续的fréchet距离提供多项式时间算法,用于建模为点集的不确定性区域。

In this paper we study a wide range of variants for computing the (discrete and continuous) Fréchet distance between uncertain curves. We define an uncertain curve as a sequence of uncertainty regions, where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and upper bound Fréchet distance, which are the minimum and maximum Fréchet distance for any realisations of the curves. We prove that both the upper and lower bound problems are NP-hard for the continuous Fréchet distance in several uncertainty models, and that the upper bound problem remains hard for the discrete Fréchet distance. In contrast, the lower bound (discrete and continuous) Fréchet distance can be computed in polynomial time. Furthermore, we show that computing the expected discrete Fréchet distance is #P-hard when the uncertainty regions are modelled as point sets or line segments. The construction also extends to show #P-hardness for computing the continuous Fréchet distance when regions are modelled as point sets. On the positive side, we argue that in any constant dimension there is a FPTAS for the lower bound problem when $Δ/ δ$ is polynomially bounded, where $δ$ is the Fréchet distance and $Δ$ bounds the diameter of the regions. We then argue there is a near-linear-time 3-approximation for the decision problem when the regions are convex and roughly $δ$-separated. Finally, we also study the setting with Sakoe--Chiba time bands, where we restrict the alignment between the two curves, and give polynomial-time algorithms for upper bound and expected discrete and continuous Fréchet distance for uncertainty regions modelled as point sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源