论文标题
超级质量黑洞周围磁盘上相互作用的巨大黑洞相互作用的轨道迁移II。旋转和传入的物体
Orbital Migration of Interacting Stellar Mass Black Holes in Disks around Supermassive Black Holes II. Spins and Incoming Objects
论文作者
论文摘要
合并Aligo和Pirgo检测到的恒星质量二进制黑洞(BBH)的大众,速率和旋转为传统的BBH形成和合并方案提供了挑战。活跃的银河核(AGN)磁盘提供了一个有希望的附加合并通道,因为气体的强大影响驱动轨道进化,使遇到耗散性并导致迁移。先前的工作表明,AGN磁盘中的恒星质量黑洞(SBH)迁移到磁盘的区域(称为迁移陷阱),在该区域中,正气压和负气体Torques取消,导致BBH频繁形成。在这里,我们通过模拟通过迁移或减少倾斜度进入内部磁盘的其他SBH的演变来建立这项工作。我们还检查了我们模型中形成的BBHS是否在其质量中心相对于磁盘的质量中心逆行或前列轨道,确定了合并BBHS的旋转的方向。进入内磁盘的轨道器在迁移陷阱附近的谐振轨道上以SBH的形式形成BBH。当这些SBH达到〜80 msun时,它们在迁移陷阱中与SBH形成BBH,超过10 Myr达到〜1000 msun。我们在逆行方向上发现了模拟轨道中68%的BBHS,这意味着我们的合并通道中的BBH将具有较小的无尺寸排列旋转χ_eff。总体而言,我们的模型产生的BBHS与迄今为止检测到的大多数BBH合并相似(0.66至120 GPC^-3 Yr^-1)和最近两个不寻常的检测,GW190412(〜0.3 GPC^-3 yr^-1)和GW190521(〜0.1 gpc^-1 gpc^-3 yr^-1 yr^-1 yr^yr^yr^-1
The masses, rates, and spins of merging stellar-mass binary black holes (BBHs) detected by aLIGO and Virgo provide challenges to traditional BBH formation and merger scenarios. An active galactic nucleus (AGN) disk provides a promising additional merger channel, because of the powerful influence of the gas that drives orbital evolution, makes encounters dissipative, and leads to migration. Previous work showed that stellar mass black holes (sBHs) in an AGN disk migrate to regions of the disk, known as migration traps, where positive and negative gas torques cancel out, leading to frequent BBH formation. Here we build on that work by simulating the evolution of additional sBHs that enter the inner disk by either migration or inclination reduction. We also examine whether the BBHs formed in our models have retrograde or prograde orbits around their centers of mass with respect to the disk, determining the orientation, relative to the disk, of the spin of the merged BBHs. Orbiters entering the inner disk form BBHs with sBHs on resonant orbits near the migration trap. When these sBHs reach ~80 Msun, they form BBHs with sBHs in the migration trap, which over 10 Myr reach ~1000 Msun. We find 68% of the BBHs in our simulation orbit in the retrograde direction, which implies BBHs in our merger channel will have small dimensionless aligned spins, χ_eff. Overall, our models produce BBHs that resemble both the majority of BBH mergers detected thus far (0.66 to 120 Gpc^-3 yr^-1 ) and two recent unusual detections, GW190412 (~0.3 Gpc^-3 yr^-1 ) and GW190521 (~0.1 Gpc^-3 yr^-1 ).