论文标题
朝着准确的预测和因果关系进行计划和政策制定分析:紧急医疗服务中的案例研究
Towards Accurate Predictions and Causal 'What-if' Analyses for Planning and Policy-making: A Case Study in Emergency Medical Services Demand
论文作者
论文摘要
紧急医疗服务(EMS)需求负荷已成为许多政府当局的重大负担,EMS的需求通常是社区压力的早期指标,这是新兴问题的警告信号。在本文中,我们介绍了深度计划和政策制定网(DEEPPPMNET),这是一个长期的短期内存网络,全球预测和推理框架,以预测EMS需求,分析因果关系,并进行“何种地方”分析,以在多个地方政府领域进行政策制定。除非传统的单变量预测技术,否则提出的方法遵循全球预测方法,在该方法中,在所有可用的EMS需求时间序列中训练了模型,以利用可用的潜在跨系列信息。 DEEPPPMNET还使用季节性分解技术,将两个不同的训练范式纳入框架中,以适合EMS相关时间序列数据的各种特征。然后,我们使用Granger因果关系概念探索因果关系,在该概念中,全球预测框架使我们能够执行可用于国家决策过程的“ what-if”分析。我们使用与澳大利亚酒精,吸毒和自我伤害有关的一组EMS数据集对我们的方法进行经验评估。提出的框架能够超越许多最新技术,并在预测准确性方面取得竞争成果。我们最终在有关酒精出口许可证的示例中说明了其用于决策的用途。
Emergency Medical Services (EMS) demand load has become a considerable burden for many government authorities, and EMS demand is often an early indicator for stress in communities, a warning sign of emerging problems. In this paper, we introduce Deep Planning and Policy Making Net (DeepPPMNet), a Long Short-Term Memory network based, global forecasting and inference framework to forecast the EMS demand, analyse causal relationships, and perform `what-if' analyses for policy-making across multiple local government areas. Unless traditional univariate forecasting techniques, the proposed method follows the global forecasting methodology, where a model is trained across all the available EMS demand time series to exploit the potential cross-series information available. DeepPPMNet also uses seasonal decomposition techniques, incorporated in two different training paradigms into the framework, to suit various characteristics of the EMS related time series data. We then explore causal relationships using the notion of Granger Causality, where the global forecasting framework enables us to perform `what-if' analyses that could be used for the national policy-making process. We empirically evaluate our method, using a set of EMS datasets related to alcohol, drug use and self-harm in Australia. The proposed framework is able to outperform many state-of-the-art techniques and achieve competitive results in terms of forecasting accuracy. We finally illustrate its use for policy-making in an example regarding alcohol outlet licenses.