论文标题

深度神经网络参数扩散方程的数值解

Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks

论文作者

Geist, Moritz, Petersen, Philipp, Raslan, Mones, Schneider, Reinhold, Kutyniok, Gitta

论文摘要

我们对近似理论结果对神经网络对实际学习问题的影响的影响进行了全面的数值研究。作为基础模型,我们研究了基于机器学习的参数偏微分方程解决方案。在这里,近似理论预测,模型的性能应仅仅取决于参数空间的维度,并取决于参数偏微分方程的溶液歧管的固有维度。我们使用各种方法来确定测试案例之间的可比性,方法是最大程度地减少测试案例选择对学习问题的优化和采样方面的影响。我们发现对以下假设有很大的支持:近似理论效应在数值分析中严重影响学习问题的实际行为。

We perform a comprehensive numerical study of the effect of approximation-theoretical results for neural networks on practical learning problems in the context of numerical analysis. As the underlying model, we study the machine-learning-based solution of parametric partial differential equations. Here, approximation theory predicts that the performance of the model should depend only very mildly on the dimension of the parameter space and is determined by the intrinsic dimension of the solution manifold of the parametric partial differential equation. We use various methods to establish comparability between test-cases by minimizing the effect of the choice of test-cases on the optimization and sampling aspects of the learning problem. We find strong support for the hypothesis that approximation-theoretical effects heavily influence the practical behavior of learning problems in numerical analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源