论文标题
用于分割晚期gadolinium增强心脏磁共振成像的算法的全球基准
A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging
论文作者
论文摘要
对心脏图像的分割,尤其是晚期加多丹增强的磁共振成像(LGE-MRI)广泛用于可视化患病的心脏结构,这是临床诊断和治疗的关键第一步。但是,由于其衰减对比度,LGE-MRI的直接分割具有挑战性。由于大多数临床研究都取决于手动和劳动力密集型方法,因此自动方法具有很高的兴趣,特别是优化的机器学习方法。为了解决这个问题,我们使用154 3D LGE-MRI(目前是世界上最大的心脏LGE-MRI数据集)组织了“ 2018年左心房细分挑战”,以及由三名医疗专家分割的左心房的关联标签,最终吸引了27个国际团队的参与。在本文中,通过进行亚组分析和进行超参数分析,对提交算法进行了广泛的分析,对卷积神经网络(CNN)的主要设计选择以及实用考虑,以实现了确定不平衡的左左Atrium Attrium Champeration。结果表明,最高方法的骰子得分为93.2%,平均表面距离表面距离为0.7毫米,显着胜过先前的最新距离。尤其是,我们的分析表明,双重使用的CNN,其中第一个CNN用于自动息区域定位,随后的CNN用于精制的区域分割,比传统方法和包含单个CNN的管道取得了远远优于传统方法。这项大规模的基准研究迈出了重大的一步,迈出了对心脏LGE-MRIS的备受改进的分割方法,并将作为评估和比较该领域未来工作的重要基准。
Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field.