论文标题

圣彼得堡悖论用于准二旋风超保湿螺旋波

St. Petersburg paradox for quasiperiodically hypermeandering spiral waves

论文作者

Biktashev, Vadim N., Melbourne, Ian

论文摘要

众所周知,螺旋波的准二级旋转高温几乎可以肯定会为螺旋尖端产生有限的轨迹。我们分析了此轨迹的大小。我们表明,这个确定性问题没有身体上明智的确定性答案,需要概率治疗。从概率的角度来看,尽管有限的概率是有限的,但均值轨迹的大小被证明具有无限的期望。这可以看作是概率理论和经济学中古典“圣彼得堡悖论”的物理表现。

It is known that quasiperiodic hypermeander of spiral waves almost certainly produces a bounded trajectory for the spiral tip. We analyse the size of this trajectory. We show that this deterministic question does not have a physically sensible deterministic answer and requires probabilistic treatment. In probabilistic terms, the size of the hypermeander trajectory proves to have an infinite expectation, despite being finite with probability one. This can be viewed as a physical manifestation of the classical "St. Petersburg paradox" from probability theory and economics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源