论文标题
通勤收缩和Brehmer积极性的等距扩张
Isometric dilations of commuting contractions and Brehmer positivity
论文作者
论文摘要
众所周知,通勤收缩的$ n $ tuple $(n \ ge 3)$通常没有等距扩张。考虑到满足某些积极假设的通勤收缩的一类$ n $ n $负责,我们构建了它们的等距扩张,因此建立了他们的von Neumann不平等。积极的假设与Brehmer的阳性有关,并由[4]中的操作员分组的等距扩张而进行。
It is well-known that an $n$-tuple $(n\ge 3)$ of commuting contractions does not posses an isometric dilation, in general. Considering a class of $n$-tuple of commuting contractions satisfying certain positivity assumption, we construct their isometric dilations and consequently establish their von Neumann inequality. The positivity assumption is related to Brehmer positivity and motivated by the study of isometric dilations of operator tuples in [4].