论文标题

涉及Bernoulli数字和第二类的Stirling号码的身份

An identity involving Bernoulli numbers and the Stirling numbers of the second kind

论文作者

Jha, Sumit Kumar

论文摘要

令$ b_ {n} $表示Bernoulli号码,而$ s(n,k)$表示第二类的stirling号码。我们证明以下身份$$ b_ {m+n} = \ sum _ {\ ordack {0 \ leq k \ leq n \\ 0 \ leq l \ leq l \ leq m}} \ frac {( - 1) s(n,k)\,s(m,l)} {(k+l+1)\,\ binom {k+l} {l}}}。据我们所知,$$的身份是新的。

Let $B_{n}$ denote the Bernoulli numbers, and $S(n,k)$ denote the Stirling numbers of the second kind. We prove the following identity $$ B_{m+n}=\sum_{\substack{0\leq k \leq n \\ 0\leq l \leq m}}\frac{(-1)^{k+l}\,k!\, l!\, S(n,k)\,S(m,l)}{(k+l+1)\,\binom{k+l}{l}}. $$ To the best of our knowledge, the identity is new.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源