论文标题

用于预测风力涡轮机功率输出的混合神经进化方法

Hybrid Neuro-Evolutionary Method for Predicting Wind Turbine Power Output

论文作者

Neshat, Mehdi, Nezhad, Meysam Majidi, Abbasnejad, Ehsan, Groppi, Daniele, Heydari, Azim, Tjernberg, Lina Bertling, Garcia, Davide Astiaso, Alexander, Bradley, Wagner, Markus

论文摘要

可靠的风力涡轮机功率预测对于风能农场的计划,调度和控制至关重要,以稳定发电。近年来,机器学习(ML)方法已成功地应用于包括可再生能源在内的广泛领域。但是,由于风电场的电力预测的挑战性质,目前的模型远远远远远远没有行业所需的准确性。在本文中,我们采用了一种复合ML方法(即混合神经进化算法),以准确地预测风力涡轮农场的功率输出。我们在监督控制和数据获取(SCADA)系统中使用历史数据作为估算瑞典陆上风电场的功率输出的输入。在开始阶段,分别采用了K-均值聚类方法和自动编码器来检测和过滤SCADA测量中的噪声。接下来,在先验的情况下,潜在的风模式是高度非线性和多样的,我们将一种自适应差异进化(SADE)算法结合在一起,作为一个高参数优化器,以及称为长短期内存(LSTM)的复发性神经网络(RNN),以模拟农场中风力涡轮机的功率曲线。在我们的实验中考虑了两个短时间的预测视野,包括前十分钟和前一小时。我们表明,我们的方法的表现优于同行。

Reliable wind turbine power prediction is imperative to the planning, scheduling and control of wind energy farms for stable power production. In recent years Machine Learning (ML) methods have been successfully applied in a wide range of domains, including renewable energy. However, due to the challenging nature of power prediction in wind farms, current models are far short of the accuracy required by industry. In this paper, we deploy a composite ML approach--namely a hybrid neuro-evolutionary algorithm--for accurate forecasting of the power output in wind-turbine farms. We use historical data in the supervisory control and data acquisition (SCADA) systems as input to estimate the power output from an onshore wind farm in Sweden. At the beginning stage, the k-means clustering method and an Autoencoder are employed, respectively, to detect and filter noise in the SCADA measurements. Next, with the prior knowledge that the underlying wind patterns are highly non-linear and diverse, we combine a self-adaptive differential evolution (SaDE) algorithm as a hyper-parameter optimizer, and a recurrent neural network (RNN) called Long Short-term memory (LSTM) to model the power curve of a wind turbine in a farm. Two short time forecasting horizons, including ten-minutes ahead and one-hour ahead, are considered in our experiments. We show that our approach outperforms its counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源