论文标题
胎儿MRI中自动皮质板分割的深切的卷积神经网络
A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI
论文作者
论文摘要
胎儿皮质板分割对于胎儿脑成熟和皮质折叠的定量分析至关重要。皮质板的手动分割或自动分割的手动细化是乏味且耗时的。另一方面,与皮质板的薄结构相比,重建的胎儿脑MRI扫描的分辨率相对较低,皮质板的薄结构,部分体积,部分体积以及皮质板形态的广泛变化,皮质板的形态随着妊娠期间的脑部成熟而挑战。为了减轻分段的手动完善负担,我们开发了一种新的强大的深度学习分割方法。我们的方法在充分的卷积神经网络体系结构中利用了混合内核卷积利用新的深入专注模块,该模块利用了深入的监督和残差连接。我们根据多种绩效指标和专家评估对方法进行了定量评估。结果表明,我们的方法的表现优于几个最先进的深层模型,以及最先进的多ATLAS分割技术。我们达到了平均骰子相似性系数为0.87,平均HAUSDORFF距离为0.96 mm,在重建的胎儿脑MRI扫描胎儿的胎儿MRI扫描中,在16至39周内扫描的胎儿的平均对称表面差为0.28 mm。在每个胎儿大脑的计算时间少于1分钟的时间内,我们的方法可以促进和加速对正常和改变的胎儿脑皮质成熟和折叠的大规模研究。
Fetal cortical plate segmentation is essential in quantitative analysis of fetal brain maturation and cortical folding. Manual segmentation of the cortical plate, or manual refinement of automatic segmentations is tedious and time-consuming. Automatic segmentation of the cortical plate, on the other hand, is challenged by the relatively low resolution of the reconstructed fetal brain MRI scans compared to the thin structure of the cortical plate, partial voluming, and the wide range of variations in the morphology of the cortical plate as the brain matures during gestation. To reduce the burden of manual refinement of segmentations, we have developed a new and powerful deep learning segmentation method. Our method exploits new deep attentive modules with mixed kernel convolutions within a fully convolutional neural network architecture that utilizes deep supervision and residual connections. We evaluated our method quantitatively based on several performance measures and expert evaluations. Results show that our method outperforms several state-of-the-art deep models for segmentation, as well as a state-of-the-art multi-atlas segmentation technique. We achieved average Dice similarity coefficient of 0.87, average Hausdorff distance of 0.96 mm, and average symmetric surface difference of 0.28 mm on reconstructed fetal brain MRI scans of fetuses scanned in the gestational age range of 16 to 39 weeks. With a computation time of less than 1 minute per fetal brain, our method can facilitate and accelerate large-scale studies on normal and altered fetal brain cortical maturation and folding.