论文标题
分子内振动能重新分布和量子真实性转变:相空间的视角
Intramolecular vibrational energy redistribution and the quantum ergodicity transition: a phase space perspective
论文作者
论文摘要
分子内振动能重新分布(IVR)以深刻的方式影响反应的动力学。理论和实验研究越来越多地表明,考虑到有限的能量流量对于发现正确的反应机制和计算准确速率至关重要。这需要明确理解导致振动模式耦合的各种非谐波(Fermi)共振的影响和相互作用。在这方面,局部随机矩阵理论(LRMT)和相关的玻色统计三角形规则(BSTR)模型已成为IVR的强大而预测的量子理论。从这个角度来看,我们强调了IVR的LRMT与经典相位空间视角之间的密切对应关系,主要是使用具有三个自由度的模型汉密尔顿人。我们的目的是三倍。首先,这显然提出了IVR途径基本上是经典的程度,因此对于控制IVR的尝试至关重要。其次,鉴于LRMT和BSTR的设计适用于大分子,因此观察到的精美对应关系即使是小分子也可以深入了解量子性牙齿过渡。第三,我们展示了现代非线性动力学方法在分析高维相位空间中的力量,从而扩展了对IVR的深刻见解,这些见解早些时候获得了具有有效自由度的系统。我们首先简要概述了最近的示例,其中IVR起着重要的作用,并通过提及与其他领域感兴趣的问题的潜在问题以及潜在的联系来得出结论。
Intramolecular vibrational energy redistribution (IVR) impacts the dynamics of reactions in a profound way. Theoretical and experimental studies are increasingly indicating that accounting for the finite rate of energy flow is critical for uncovering the correct reaction mechanisms and calculating accurate rates. This requires an explicit understanding of the influence and interplay of the various anharmonic (Fermi) resonances that lead to the coupling of the vibrational modes. In this regard, the local random matrix theory (LRMT) and the related Bose-statistics triangle rule (BSTR) model have emerged as a powerful and predictive quantum theories for IVR. In this Perspective we highlight the close correspondence between LRMT and the classical phase space perspective on IVR, primarily using model Hamiltonians with three degrees of freedom. Our purpose for this is threefold. First, this clearly brings out the extent to which IVR pathways are essentially classical, and hence crucial towards attempts to control IVR. Second, given that LRMT and BSTR are designed to be applicable for large molecules, the exquisite correspondence observed even for small molecules allows for insights into the quantum ergodicity transition. Third, we showcase the power of modern nonlinear dynamics methods in analysing high dimensional phase spaces, thereby extending the deep insights into IVR that were earlier gained for systems with effectively two degrees of freedom. We begin with a brief overview of recent examples where IVR plays an important role and conclude by mentioning the outstanding problems and the potential connections to issues of interest in other fields.