论文标题

从克隆快照推断出的胚胎干细胞的耦合分化和分裂

Coupled differentiation and division of embryonic stem cells inferred from clonal snapshots

论文作者

Ruske, Liam J., Kursawe, Jochen, Tsakiridis, Anestis, Wilson, Valerie, Fletcher, Alexander G., Blythe, Richard A., Schumacher, Linus J.

论文摘要

通过测序,成像和表观遗传标记获得的单细胞数据的泛滥导致对细胞态的详细描述。但是,确定细胞如何在不同状态之间的过渡仍然很具有挑战性,部分原因是数据通常仅限于快照。从这种快照中推断细胞状态过渡的先决条件是区分过渡是否与细胞分裂耦合。为了解决这个问题,我们提出了两个最小的细胞分裂分支过程模型和混合良好的人群分化。这些模型描述了分化和分裂耦合或取消耦合的动力学。对于每个模型,我们都会为每个亚群的平均值和方差以及可能性的分析表达式得出分析表达式,从而在理想化的分化和分裂事件的轨迹的理想情况下,允许精确的贝叶斯参数推理和模型选择。在快照的情况下,我们会提出样本路径算法,并使用它来预测实验设计测量值的最佳时间间距。然后,我们将此方法应用于\ textIt {Intter}数据集,分析了培养条件下培养培养基干细胞的克隆生长,从而促进自我更新或分化。在这里,大量的细胞状态需要近似贝叶斯计算。对于两种培养条件,我们的推论都支持细胞状态转变与分裂的模型。对于促进分化的培养条件,我们的分析表明动态可能会发生变化,随着时间的流逝,这些过程变得越来越耦合。

The deluge of single-cell data obtained by sequencing, imaging and epigenetic markers has led to an increasingly detailed description of cell state. However, it remains challenging to identify how cells transition between different states, in part because data are typically limited to snapshots in time. A prerequisite for inferring cell state transitions from such snapshots is to distinguish whether transitions are coupled to cell divisions. To address this, we present two minimal branching process models of cell division and differentiation in a well-mixed population. These models describe dynamics where differentiation and division are coupled or uncoupled. For each model, we derive analytic expressions for each subpopulation's mean and variance and for the likelihood, allowing exact Bayesian parameter inference and model selection in the idealised case of fully observed trajectories of differentiation and division events. In the case of snapshots, we present a sample path algorithm and use this to predict optimal temporal spacing of measurements for experimental design. We then apply this methodology to an \textit{in vitro} dataset assaying the clonal growth of epiblast stem cells in culture conditions promoting self-renewal or differentiation. Here, the larger number of cell states necessitates approximate Bayesian computation. For both culture conditions, our inference supports the model where cell state transitions are coupled to division. For culture conditions promoting differentiation, our analysis indicates a possible shift in dynamics, with these processes becoming more coupled over time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源