论文标题
关于Lepton数字和暗物质的新见解
New Insights on Lepton Number and Dark Matter
论文作者
论文摘要
通常认为暗物质(DM)是通过对称性稳定的,这主要被认为是$ z_2 $。例如,在超对称性中,它是$ r $奇偶校验,即$(-1)^{3b+l+2j} $。但是,它可能是$ z_n $或$ u(1)_d $,并且可以从广义Lepton编号中得出。在这种情况下,中微子可能是Majorana或Dirac,其质量归功于暗物质,即它们具有术语。
Dark matter (DM) is usually assumed to be stabilized by a symmetry, which is mostly considered to be $Z_2$. For example, in supersymmetry it is $R$ parity, i.e. $(-1)^{3B+L+2j}$. However, it may be $Z_n$ or $U(1)_D$, and derivable from generalized lepton number. In this context, neutrinos may be Majorana or Dirac, and owe their masses to dark matter, i.e. they are scotogenic.