论文标题
随机进化方程:适合序列,渐近性和对图的应用
Random evolution equations: well-posedness, asymptotics, and applications to graphs
论文作者
论文摘要
我们研究支持随机随机变化的结构支持的扩散型方程。在解决了良好的问题之后,我们关注解决方案的渐近行为:我们的主要结果为(随机)传播器的标准朝向(确定性)稳态的态度提供了足够的条件。我们在具有随机发展的特征的两个环境中应用我们的发现:组合图上的差异运算符的合奏,或者在度量图上的差分运算符。
We study diffusion-type equations supported on structures that are randomly varying in time. After settling the issue of well-posedness, we focus on the asymptotic behavior of solutions: our main result gives sufficient conditions for pathwise convergence in norm of the (random) propagator towards a (deterministic) steady state. We apply our findings in two environments with randomly evolving features: ensembles of difference operators on combinatorial graphs, or else of differential operators on metric graphs.