论文标题

使用传输电子光谱调查钾间隔的散装MOS $ _2 $的调查

Investigation of potassium-intercalated bulk MoS$_2$ using transmission electron energy-loss spectroscopy

论文作者

Habenicht, Carsten, Lubk, Axel, Schuster, Roman, Knupfer, Martin, Büchner, Bernd

论文摘要

我们已经使用Electron Enervy-Moss Spectroscopicy研究了钾(K)插入对$ 2H $ -MOS $ _2 $的影响。对于最高约0.4的K浓度,晶体似乎与结构相和不规则钾分布的混合物不均匀。在此互动级别上方,MOS $ _2 $在$ AB $平面中展示了$ 2A \ times 2a $上层建筑,A = 3.20 $ \ unicode {x212b} $和c = 8.23 $ \ unicode {x212b} $,Unicode {x212b} $表示$ 2H $ 1TT''''''''衍射模式还显示了一个$ \ sqrt {3} a \ times \ sqrt {3} a $和一个弱$ 2 \ sqrt {3} a \ times 2 \ times 2 \ sqrt {3} $上层结构,这很可能与块茎量的订购相关。半导体到金属的转变发生在电子损失光谱中的激发特征的消失以及带有2.78 eV的未筛选等离子体频率的电荷载体等离子体的出现。该等离子体具有阳性,二次分散体,并且似乎与带间过渡引起的激发叠加。等离子峰能量位置随钾浓度的函数的行为表明,小于$ \ sim 0.3 $的钾石化对象在热力学上是不稳定的,而较高的石化时间表最高为$ \ sim 0.5 $是热力学上稳定的。大于$ \ sim 0.5 $的钾浓度导致MOS $ _2 $的分解和K $ _2 $ s的形成。介电函数的实际部分和K $ _ {0.41} $ MOS $ _2 $的光电率是通过Kramers-Kronig分析得出的。

We have investigated the effect of potassium (K) intercalation on $2H$-MoS$_2$ using transmission electron energy-loss spectroscopy. For K concentrations up to approximately 0.4, the crystals appear to be inhomogeneous with a mix of structural phases and irregular potassium distribution. Above this intercalation level, MoS$_2$ exhibits a $2a \times 2a$ superstructure in the $ab$ plane and unit cell parameters of a = 3.20 $\unicode{x212B}$ and c = 8.23 $\unicode{x212B}$ indicating a conversion from the $2H$ to the $1T'$ or $1T''$ polytypes. The diffraction patterns also show a $\sqrt{3}a \times \sqrt{3}a$ and a much weaker $2\sqrt{3}a \times 2\sqrt{3}a$ superstructure that is very likely associated with the ordering of the potassium ions. A semiconductor-to-metal transition occurs signified by the disappearance of the excitonic features from the electron energy-loss spectra and the emergence of a charge carrier plasmon with an unscreened plasmon frequency of 2.78 eV. The plasmon has a positive, quadratic dispersion and appears to be superimposed with an excitation arising from interband transitions. The behavior of the plasmon peak energy positions as a function of potassium concentration shows that potassium stoichiometries of less than $\sim 0.3$ are thermodynamically unstable while higher stoichiometries up to $\sim 0.5$ are thermodynamically stable. Potassium concentrations greater than $\sim 0.5$ lead to the decomposition of MoS$_2$ and the formation of K$_2$S. The real part of the dielectric function and the optical conductivity of K$_{0.41}$MoS$_2$ were derived from the loss spectra via Kramers-Kronig analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源