论文标题
学习的垃圾收集
Learned Garbage Collection
论文作者
论文摘要
几种编程语言使用垃圾收集器(GCS)自动管理程序员的内存。这样的收藏家必须决定何时寻找无法实现的对象,这可能会对某些应用产生巨大的性能影响。在这项初步工作中,我们为学习的垃圾收集器提出了一种设计,该设计随着时间的流逝而自主地学习何时进行收藏。通过使用增强学习,我们的设计可以包含用户定义的奖励功能,从而允许自主垃圾收集器学习优化用户需求的确切指标(例如,请求延迟或查询每秒)。我们对原型进行了初步的实验研究,表明基于表格Q学习的方法可能是有希望的。
Several programming languages use garbage collectors (GCs) to automatically manage memory for the programmer. Such collectors must decide when to look for unreachable objects to free, which can have a large performance impact on some applications. In this preliminary work, we propose a design for a learned garbage collector that autonomously learns over time when to perform collections. By using reinforcement learning, our design can incorporate user-defined reward functions, allowing an autonomous garbage collector to learn to optimize the exact metric the user desires (e.g., request latency or queries per second). We conduct an initial experimental study on a prototype, demonstrating that an approach based on tabular Q learning may be promising.