论文标题
洛伦兹(Lorentz)侵略$ ϕ^4 $型号中的扭结 - 安提金克(Kink-Antikink)碰撞
Kink-antikink collision in a Lorentz-violating $ϕ^4$ model
论文作者
论文摘要
在这项工作中,考虑了二维Lorentz竞争$ ϕ^4 $模型中的扭结 - 安提克克碰撞。结果表明,提出的模型中的洛伦兹侵入术语不会影响标准$ ϕ^4 $模型的线性扰动光谱的结构,因此只有一种振动模式。但是,洛伦兹侵略项会影响振动模式的频率和空间波函数。结果,$ ϕ^4 $ KINK-ANTIKINK碰撞的众所周知结果也会改变。使用傅立叶光谱法模拟了具有不同初始速度和洛伦兹侵入参数值不同值和洛伦兹侵入参数的碰撞。我们的结果表明,具有较大Lorentz侵入参数的模型将具有较小的关键速度$ v_c $和较小的弹跳窗口宽度。还发现了标量场最大能密度的曲线中存在的有趣分形结构。
In this work, kink-antikink collision in a two-dimensional Lorentz-violating $ϕ^4$ model is considered. It is shown that the Lorentz-violating term in the proposed model does not affect the structure of the linear perturbation spectrum of the standard $ϕ^4$ model, and thus there exists only one vibrational mode. The Lorentz-violating term impacts, however, the frequency and spatial wave function of the vibrational mode. As a consequence, the well-known results on $ϕ^4$ kink-antikink collision will also change. Collisions of kink-antikink pairs with different values of initial velocities and Lorentz-violating parameters are simulated using the Fourier spectral method. Our results indicate that models with larger Lorentz-violating parameters would have smaller critical velocities $v_c$ and smaller widths of bounce windows. Interesting fractal structures existing in the curves of maximal energy densities of the scalar field are also found.