论文标题

一个理性扩展的同一电位的一个参数家族

One parameter family of rationally extended isospectral potentials

论文作者

Yadav, Rajesh Kumar, Banerjee, Suman, Kumari, Nisha, Khare, Avinash, Mandal, Bhabani Prasad

论文摘要

我们从给定的一维理性扩展潜力开始,与$ x_m $ $ x $异常的正交多项式相关,并使用量子力学中的超对称性的想法,我们获得了一个连续参数($λ$),理性地扩展了严格的等值范围,其解决方案的解决方案也与xm extifials Orthogiality Orthogonal orthogonal polynomail saks相关。我们通过考虑三个众所周知的理性扩展潜力来说明这种结构,两种具有纯离散频谱(扩展的径向振荡器和扩展的围巾-I),另一个具有离散和连续频谱(扩展的广义POSCHL Teller),并明确地构建了相应的连续参数,该持续参数属于一个持续的潜在范围。此外,在$λ= 0 $和$ -1 $的特殊情况下,我们分别获得了两个确切的可解决的合理扩展潜力,即合理扩展的Pursey和合理扩展的Abhrahm-Moses电位。我们通过详细讨论$ x_1 $合理地扩展一个电位的特定情况来说明整个过程,包括相应的Pursey和Abraham Moses电位。

We start from a given one dimensional rationally extended potential associated with $X_m$ exceptional orthogonal polynomials and using the idea of supersymmetry in quantum mechanics, we obtain one continuous parameter ($λ$) family of rationally extended strictly isospectral potentials whose solutions are also associated with Xm exceptional orthogonal polynomials. We illustrate this construction by considering three well known rationally extended potentials, two with pure discrete spectrum (the extended radial oscillator and the extended Scarf-I) and one with both the discrete and the continuous spectrum (the extended generalized Poschl-Teller) and explicitly construct the corresponding one continuous parameter family of rationally extended strictly isospectral potentials. Further, in the special case of $λ= 0$ and $-1$, we obtain two new exactly solvable rationally extended potentials, namely the rationally extended Pursey and the rationally extended Abhrahm-Moses potentials respectively. We illustrate the whole procedure by discussing in detail the particular case of the $X_1$ rationally extended one parameter family of potentials including the corresponding Pursey and the Abraham Moses potentials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源