论文标题

预测日本的Covid-19感染:状态空间建模方法

Predicting Infection of COVID-19 in Japan: State Space Modeling Approach

论文作者

Kobayashi, Genya, Sugasawa, Shonosuke, Tamae, Hiromasa, Ozu, Takayuki

论文摘要

日本确认的冠状病毒疾病疾病(Vovid-19)病例数量一直在增加,并且对社会产生了严重影响,尤其是在2020年4月7日紧急状态宣布宣布后。这项研究分析了2020年3月1日至2020年4月22日的实时数据,该数据基于与国家统计模型相结合的统计模型,该工具可与众所周知的SIR SIST FERCETCTIST一起使用。模型估计和预测是使用贝叶斯方法进行的。本研究提供了未知参数的参数估计值,这些参数批判性地确定了从SIR模型中得出的流行过程以及对传染病比例的未来过渡的预测,包括流行峰的大小和时间,预测间隔是自然而然的。在各种情况下的预测结果表明,直到5月6日的国家提升,感染率的暂时降低只会稍微延迟流行峰值。为了最大程度地减少流行病的传播,强烈建议进行干预持续很长时间,并且即使在提升后,政府和个人也要长期努力降低感染率。

The number of confirmed cases of the coronavirus disease (COVID-19) in Japan has been increasing day by day and has had a serious impact on the society especially after the declaration of the state of emergency on April 7, 2020. This study analyzes the real time data from March 1 to April 22, 2020 by adopting a sophisticated statistical modeling tool based on the state space model combined with the well-known susceptible-exposed-infected (SIR) model. The model estimation and forecasting are conducted using the Bayesian methodology. The present study provides the parameter estimates of the unknown parameters that critically determine the epidemic process derived from the SIR model and prediction of the future transition of the infectious proportion including the size and timing of the epidemic peak with the prediction intervals that naturally accounts for the uncertainty. The prediction results under various scenarios reveals that the temporary reduction in the infection rate until the planned lifting of the state on May 6 will only delay the epidemic peak slightly. In order to minimize the spread of the epidemic, it is strongly suggested that an intervention is carried out for an extended period of time and that the government and individuals make a long term effort to reduce the infection rate even after the lifting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源