论文标题
在映射班级组中有效产生的右角artin群体
Effective Generation of Right-Angled Artin Groups in Mapping Class Groups
论文作者
论文摘要
我们表明,给定一个集合$ x = \ {f_1 $,\ ldots,$ f_m \} $在表面上的$ s $上的纯映射类,仅取决于$ x $,因此有一个明确的常数n,因此他们的nth powers $ \ \ \ \ {f_1^n $,\ ldots,\ ldots,$ f_m^n \ f_m^n \ f_m^n \ f_m^n \} - MCG($ S $)。此外,我们表明这些亚组未经发生。
We show that given a collection $X=\{f_1$, \ldots , $f_m\}$ of pure mapping classes on a surface $S$, there is an explicit constant N, depending only on $X$, such that their Nth powers $\{f_1^N$, \ldots , $f_m^N\}$ generate the expected right-angled Artin subgroup of MCG($S$). Moreover, we show that these subgroups are undistorted.