论文标题
扭转理论中的宇宙学原理:爱因斯坦 - 卡丹 - 迪拉克 - 马克斯韦尔的案例
The cosmological principle in theories with torsion: The case of Einstein-Cartan-Dirac-Maxwell gravity
论文作者
论文摘要
我们解决了宇宙学原理的实施,即在宇宙中物质的空间分布中的同质性和各向同性的假设,在爱因斯坦 - 卡丹理论的背景下,包括迪拉克和麦克斯韦场与扭力的最小耦合。该理论在高自旋密度的环境中产生了新的物理效应,同时使真空动力学不受影响。我们的方法是将宇宙学原理从发作到几何自由度(度量和扭转函数)施加,从而限制了Friedmann样方程中的扭转组件以及相应的校正项,以及所得的费米和玻色子和玻色子和玻感(非线性)动力学。我们为几何和物质自由度提供了相应的宇宙学动力学,并讨论了这种方法的有效性。
We address the implementation of the cosmological principle, that is, the assumption of homogeneity and isotropy in the spatial distribution of matter in the Universe, within the context of Einstein-Cartan theory including minimal couplings of both Dirac and Maxwell fields to torsion. This theory gives rise to new physical effects in environments of high spin densities while leaving the vacuum dynamics unaffected. Our approach is to impose the cosmological principle from the onset to the geometrical degrees of freedom (metric and torsion functions), which constrains the torsion components and the corresponding correction terms in the Friedmann-like equations and in the resulting fermionic and bosonic (non-linear) dynamics. We derive the corresponding cosmological dynamics for the geometrical and matter degrees of freedom and discuss the validity of this approach.