论文标题

部分可观测时空混沌系统的无模型预测

Automated Physics-Derived Code Generation for Sensor Fusion and State Estimation

论文作者

Kaparounakis, Orestis, Tsoutsouras, Vasileios, Soudris, Dimitrios, Stanley-Marbell, Phillip

论文摘要

我们提出了一种新方法,用于自动从机器可读的传感系统的物理及其信号和信号约束物理的物理学的可读规范中自动生成状态估计算法。我们将新的状态估计器代码生成方法作为物理规范语言的后端实现,并应用后端来生成线性系统(Kalman滤波器)和非线性系统(扩展的Kalman滤波器)的状态估计器的完整C代码实现。从物理规范中生成状态估计器代码是完全自动化的,不需要手动干预。生成的过滤器可以结合一种自动分化技术,该技术将功能评估和分化结合在单个过程中。使用一系列复杂性的物理系统的描述,我们生成了扩展的卡尔曼过滤器,我们使用仿真轨迹根据预测准确性进行了评估。结果表明,我们自动生成的传感器融合和状态估计实现提供了与人类写的手工优化对应物相同的误差。我们还量化了RISC-V体系结构上生成的状态估计器实现的代码大小和动态指令计数要求。结果表明,与标准分化技术相比,我们使用自动分化的综合估计实施实现了使用自动差异的实施,导致生成的卡尔曼滤波器的动态指导数量平均改善为7%-16%。这是有限成本的平均增加4.5%,生成过滤器的代码大小增加了4.5%。

We present a new method for automatically generating the implementation of state-estimation algorithms from a machine-readable specification of the physics of a sensing system and physics of its signals and signal constraints. We implement the new state-estimator code generation method as a backend for a physics specification language and we apply the backend to generate complete C code implementations of state estimators for both linear systems (Kalman filters) and non-linear systems (extended Kalman filters). The state estimator code generation from physics specification is completely automated and requires no manual intervention. The generated filters can incorporate an Automatic Differentiation technique which combines function evaluation and differentiation in a single process. Using the description of physical system of a range of complexities, we generate extended Kalman filters, which we evaluate in terms of prediction accuracy using simulation traces. The results show that our automatically-generated sensor fusion and state estimation implementations provide state estimation within the same error bound as the human-written hand-optimized counterparts. We additionally quantify the code size and dynamic instruction count requirements of the generated state estimator implementations on the RISC-V architecture. The results show that our synthesized state estimation implementation employing Automatic Differentiation leads to an average improvement in the dynamic instruction count of the generated Kalman filter of 7%-16% compared to the standard differentiation technique. This is improvement comes at the limited cost of an average 4.5% increase in the code size of the generated filters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源