论文标题
状态的中子星外壳方程:机器学习方法
The Neutron Star Outer Crust Equation of State: A Machine Learning approach
论文作者
论文摘要
构建中子星的外壳需要了解原子核的结合能(BE)。尽管大量核是通过实验确定的,并且可以从AME数据表中获得,但对于其他我们需要依赖理论模型的其他核。有很多物理理论可以预测BE,每个BE都有其自己的优势和劣势。在本文中,我们在AME2016数据集上应用机器学习(ML)算法来预测原子核的结合能{的结合能。我们作品的新颖特征是它是独立的。我们不假定或使用任何核物理模型,而是直接在AME2016数据集上使用ML算法。通过使用另一种ML算法来训练第一个算法的误差并迭代重复此过程,我们的结果将进一步完善。我们的最佳算法给出$σ_ {\ rm rms} \大约0.58 $ MEV,用于在随机测试集上绑定能量。这与迄今为止在文献中研究的所有物理模型或ML改进的物理模型相媲美。利用机器学习算法的预测,我们构建了中子星的状态(EOS)的外壳方程,并表明我们的模型与现有模型相媲美。这项工作还展示了各种ML算法的使用以及有关我们如何到达最佳算法的详细分析。它将帮助物理社区理解如何选择适合其数据集的ML算法。我们的算法和最佳拟合模型也可以公开使用社区使用。
Constructing the outer crust of the neutron stars requires the knowledge of the Binding Energy (BE) of the atomic nuclei. Although the BE of a lot of the nuclei is experimentally determined and can be obtained from the AME data table, for the others we need to depend on theoretical models. There exist a lot of physical theories to predict the BE, each with its own strengths and weaknesses. In this paper, we apply Machine Learning (ML) algorithms on AME2016 data set to predict the Binding Energy {of atomic nuclei}. The novel feature of our work is that it is model independent. We do not assume or use any nuclear physics model but use only ML algorithms directly on the AME2016 data set. Our results are further refined by using another ML algorithm to train the errors of the first algorithm, and repeating this process iteratively. Our best algorithm gives $σ_{\rm rms} \approx 0.58$ MeV for Binding Energy on randomized testing sets. This is comparable to all physics models or ML improved physics models studied in literature till date. Using the predictions of our Machine Learning algorithm, we construct the outer crust equation of state (EoS) of a neutron star and show that our model is comparable to existing models. This work also demonstrates the use of various ML algorithms and a detailed analysis on how we arrived at our best algorithm. It will help the physics community in understanding how to choose an ML algorithm which would be suited for their data set. Our algorithms and best fit model is also made publicly available for the use of the community.