论文标题

询问不讲:在上下文表示中探索潜在本体论

Asking without Telling: Exploring Latent Ontologies in Contextual Representations

论文作者

Michael, Julian, Botha, Jan A., Tenney, Ian

论文摘要

经过验证的上下文编码器(例如Elmo和Bert)的成功引起了这些模型所学的知识:如果没有明确的监督,他们是否会学会编码有意义的语言结构观念?如果是这样,该结构如何编码?为了进行研究,我们介绍了潜在子类学习(LSL):对基于分类器的探测方法的修改,该方法诱导了探针输入的潜在分类(或本体学)。无需访问细颗粒的金标签,LSL提取了以可解释和可量化形式的输入表示形式的新兴结构。在实验中,我们发现了熟悉类别的有力证据,例如Elmo中的人格概念以及新的本体论区别,例如偏爱对核心论证上的细粒语义角色。我们的结果为预审慎的编码器中新兴结构提供了独特的新证据,包括与早期方法无法接近的现有注释的偏离。

The success of pretrained contextual encoders, such as ELMo and BERT, has brought a great deal of interest in what these models learn: do they, without explicit supervision, learn to encode meaningful notions of linguistic structure? If so, how is this structure encoded? To investigate this, we introduce latent subclass learning (LSL): a modification to existing classifier-based probing methods that induces a latent categorization (or ontology) of the probe's inputs. Without access to fine-grained gold labels, LSL extracts emergent structure from input representations in an interpretable and quantifiable form. In experiments, we find strong evidence of familiar categories, such as a notion of personhood in ELMo, as well as novel ontological distinctions, such as a preference for fine-grained semantic roles on core arguments. Our results provide unique new evidence of emergent structure in pretrained encoders, including departures from existing annotations which are inaccessible to earlier methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源