论文标题
拓扑半学纳米结构:从属性到拓扑
Topological Semimetal Nanostructures: From Properties to Topotronics
论文作者
论文摘要
拓扑半学以散装狄拉克或韦尔锥和表面费米 - arc状态为特征,近年来引起了巨大的研究兴趣。纳米结构具有较大的地表与体积比和易于场效应门控,为检测和操纵拓扑量子状态提供了理想的平台。源自这些拓扑状态的外来物理特性,具有对将来的拓扑电子(拓扑)吸引人的质地拓扑半学。例如,线性能量分散关系对于宽带红外光探测器有希望,拓扑表面状态的自旋摩肌锁定性质对于旋转三通很有价值,并且拓扑超导性对于耐断层的量子非常需要。对于现实生活中的应用,就方便的制造和集成而言,必须采用纳米结构形式的拓扑半学。在这里,我们回顾了拓扑半学纳米结构的最新进展,并从量子传输特性开始。然后引入了基于拓扑半学的电子设备。最后,我们讨论了将来应该会付出巨大努力的几个重要方面,包括可控的合成,量子状态的操纵,拓扑场效应晶体管,自旋形式应用和拓扑量子计算。
Characterized by bulk Dirac or Weyl cones and surface Fermi-arc states, topological semimetals have sparked enormous research interest in recent years. The nanostructures, with large surface-to-volume ratio and easy field-effect gating, provide ideal platforms to detect and manipulate the topological quantum states. Exotic physical properties originating from these topological states endow topological semimetals attractive for future topological electronics (topotronics). For example, the linear energy dispersion relation is promising for broadband infrared photodetectors, the spin-momentum locking nature of topological surface states is valuable for spintronics, and the topological superconductivity is highly desirable for fault-tolerant qubits. For real-life applications, topological semimetals in the form of nanostructures are necessary in terms of convenient fabrication and integration. Here, we review the recent progresses in topological semimetal nanostructures and start with the quantum transport properties. Then topological semimetal-based electronic devices are introduced. Finally, we discuss several important aspects that should receive great effort in the future, including controllable synthesis, manipulation of quantum states, topological field effect transistors, spintronic applications, and topological quantum computation.