论文标题
金融市场的远程依赖性:一种移动的平均群集熵方法
Long-Range Dependence in Financial Markets: a Moving Average Cluster Entropy Approach
论文作者
论文摘要
通过研究\ textIt {移动平均群集熵}的基本动力学过程,对经济和社会系统的无形复杂性进行了观点。一项广泛的分析证明了\ textit {移动平均群集熵}的市场和地平线依赖性。通过将\ textIt {移动平均群集熵}应用于远程相关随机过程的方法来审查该行为的起源,作为自动回归分数集成的移动平均值(ARFIMA)和分数布朗尼运动(FBM)。为此,生成了一系列的系列系列,并具有赫斯特指数$ h $的广泛值以及自动回归,差异和移动平均参数$ p,d,q $。观察到\ textit {移动平均群集熵},\ textit {市场动态索引}和远程相关参数$ h $,$ d $之间的系统关系。这项研究表明,集群熵的地平线依赖性所表现出的特征行为与金融市场的远程正相关有关。具体而言,远距离的Arfima过程与差异参数$ d \ simeq 0.05 $,$ d \ simeq 0.15 $和$ d \ simeq 0.25 $与\ textit {移动平均群集熵}在时间系列中获得DJIA,S \&p500和Nasdaq。
A perspective is taken on the intangible complexity of economic and social systems by investigating the underlying dynamical processes that produce, store and transmit information in financial time series in terms of the \textit{moving average cluster entropy}. An extensive analysis has evidenced market and horizon dependence of the \textit{moving average cluster entropy} in real world financial assets. The origin of the behavior is scrutinized by applying the \textit{moving average cluster entropy} approach to long-range correlated stochastic processes as the Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Fractional Brownian motion (FBM). To that end, an extensive set of series is generated with a broad range of values of the Hurst exponent $H$ and of the autoregressive, differencing and moving average parameters $p,d,q$. A systematic relation between \textit{moving average cluster entropy}, \textit{Market Dynamic Index} and long-range correlation parameters $H$, $d$ is observed. This study shows that the characteristic behaviour exhibited by the horizon dependence of the cluster entropy is related to long-range positive correlation in financial markets. Specifically, long range positively correlated ARFIMA processes with differencing parameter $ d\simeq 0.05$, $d\simeq 0.15$ and $ d\simeq 0.25$ are consistent with \textit{moving average cluster entropy} results obtained in time series of DJIA, S\&P500 and NASDAQ.