论文标题
在深层仪器变量上估计
On Deep Instrumental Variables Estimate
论文作者
论文摘要
内生性问题在根本上至关重要,因为许多经验应用可能会忽略解释变量,测量误差或同时因果关系。最近,\ cite {hllt17}提出了一个基于深神经网络的“深层仪器变量(IV)”框架,以解决内生性,表现出比现有方法相比表现出了出色的性能。本文的目的是从理论上理解深IV的经验成功。具体而言,我们考虑使用线性仪器变量模型中的深神经网络的两阶段估计器。通过对内源变量和仪器变量之间的降低形式方程施加潜在的结构假设,第一阶段估计器可以自动捕获这种潜在结构并以最小值最佳速率收敛到最佳仪器,这是没有仪器变量的尺寸,因此可以减轻压损性的质量。此外,与经典方法相比,由于第一阶段估计器的收敛速度更快,第二阶段估计器具有{较小(二阶)估计误差},并且需要对最佳仪器平滑度的条件较弱。鉴于精心选择了所采用的深神经网络的深度和宽度,我们进一步表明,第二阶段估计器达到了半参数效率结合。关于合成数据和对汽车市场数据应用的模拟研究证实了我们的理论。
The endogeneity issue is fundamentally important as many empirical applications may suffer from the omission of explanatory variables, measurement error, or simultaneous causality. Recently, \cite{hllt17} propose a "Deep Instrumental Variable (IV)" framework based on deep neural networks to address endogeneity, demonstrating superior performances than existing approaches. The aim of this paper is to theoretically understand the empirical success of the Deep IV. Specifically, we consider a two-stage estimator using deep neural networks in the linear instrumental variables model. By imposing a latent structural assumption on the reduced form equation between endogenous variables and instrumental variables, the first-stage estimator can automatically capture this latent structure and converge to the optimal instruments at the minimax optimal rate, which is free of the dimension of instrumental variables and thus mitigates the curse of dimensionality. Additionally, in comparison with classical methods, due to the faster convergence rate of the first-stage estimator, the second-stage estimator has {a smaller (second order) estimation error} and requires a weaker condition on the smoothness of the optimal instruments. Given that the depth and width of the employed deep neural network are well chosen, we further show that the second-stage estimator achieves the semiparametric efficiency bound. Simulation studies on synthetic data and application to automobile market data confirm our theory.