论文标题

语义模型从口头到名义域的无监督转移

Unsupervised Transfer of Semantic Role Models from Verbal to Nominal Domain

论文作者

Zhao, Yanpeng, Titov, Ivan

论文摘要

语义角色标签(SRL)是一个NLP任务,涉及将谓词参数分配给类型,称为语义角色。尽管对SRL的研究主要集中在口头谓词上,而SRL可用的许多资源仅提供注释,但语义关系通常是由其他语言结构(例如名义化)触发的。在这项工作中,我们研究了一个传输方案,其中我们假设源言语域的角色注释数据,但仅对目标标称域的未标记数据。我们的关键假设是使两个领域之间的传递在两个域之间的转移,是角色的选择偏好(即对可接受参数的偏好或约束)并不十分取决于该关系是由动词还是名词触发的。例如,相同的参数可以填补口头谓词“获取”及其名义表格“获取”的收购方角色。我们从变异自动编码的角度来处理转移任务。该标签用作编码器(预测句子的角色标签),而选择性偏好是在解码器组件中捕获的(为预测角色生成参数)。培训数据中未标记名义角色,而学习目标则推动标签者分配参数的角色。在整个域上共享解码器参数会鼓励对两个域预测的标签之间的一致性,并促进转移。该方法在英语Conll-2009数据集上基本上优于基准,例如无监督和“直接传输”方法。

Semantic role labeling (SRL) is an NLP task involving the assignment of predicate arguments to types, called semantic roles. Though research on SRL has primarily focused on verbal predicates and many resources available for SRL provide annotations only for verbs, semantic relations are often triggered by other linguistic constructions, e.g., nominalizations. In this work, we investigate a transfer scenario where we assume role-annotated data for the source verbal domain but only unlabeled data for the target nominal domain. Our key assumption, enabling the transfer between the two domains, is that selectional preferences of a role (i.e., preferences or constraints on the admissible arguments) do not strongly depend on whether the relation is triggered by a verb or a noun. For example, the same set of arguments can fill the Acquirer role for the verbal predicate `acquire' and its nominal form `acquisition'. We approach the transfer task from the variational autoencoding perspective. The labeler serves as an encoder (predicting role labels given a sentence), whereas selectional preferences are captured in the decoder component (generating arguments for the predicting roles). Nominal roles are not labeled in the training data, and the learning objective instead pushes the labeler to assign roles predictive of the arguments. Sharing the decoder parameters across the domains encourages consistency between labels predicted for both domains and facilitates the transfer. The method substantially outperforms baselines, such as unsupervised and `direct transfer' methods, on the English CoNLL-2009 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源