论文标题
指针:通过基于插入的生成预训练受到限制的渐进文本生成
POINTER: Constrained Progressive Text Generation via Insertion-based Generative Pre-training
论文作者
论文摘要
BERT和GPT-2等大型预训练的语言模型在语言表示学习和自由形式的文本生成方面取得了出色的表现。但是,这些模型不能直接用于在指定的词汇约束下生成文本。为了应对这一挑战,我们提出了指针(基于渐进的插入变压器),这是一种简单而新颖的基于插入的方法,用于硬限制文本生成。所提出的方法通过并行方式逐步插入现有令牌之间的新令牌。递归应用此过程,直到序列完成为止。由此产生的粗到精细的层次结构使生成过程直观且可解释。我们通过在12GB Wikipedia数据集上使用拟议的基于渐进式插入的目标预先培训模型,然后将其在下游硬约束的生成任务上进行微调。在推理期间,非自动回归解码在经验上具有对数的时间复杂性。新闻和Yelp数据集的实验结果表明,指针在约束文本生成上实现最新性能。我们发布了预先培训的模型和源代码,以促进未来的研究(https://github.com/dreasysnail/pointer)。
Large-scale pre-trained language models, such as BERT and GPT-2, have achieved excellent performance in language representation learning and free-form text generation. However, these models cannot be directly employed to generate text under specified lexical constraints. To address this challenge, we present POINTER (PrOgressive INsertion-based TransformER), a simple yet novel insertion-based approach for hard-constrained text generation. The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner. This procedure is recursively applied until a sequence is completed. The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable. We pre-train our model with the proposed progressive insertion-based objective on a 12GB Wikipedia dataset, and fine-tune it on downstream hard-constrained generation tasks. Non-autoregressive decoding yields an empirically logarithmic time complexity during inference time. Experimental results on both News and Yelp datasets demonstrate that POINTER achieves state-of-the-art performance on constrained text generation. We released the pre-trained models and the source code to facilitate future research (https://github.com/dreasysnail/POINTER).