论文标题
通过噪声建模网络从嘈杂的标签中学习
Learning from Noisy Labels with Noise Modeling Network
论文作者
论文摘要
近年来,多标签图像分类引起了人们的重大兴趣,这种系统的性能通常会遭受训练数据中不正确或缺失标签的情况。在本文中,我们将培训分类器的最新时间扩展到共同处理两种错误数据。我们通过使用新的噪声建模网络(NMN)在我们的卷积神经网络(CNN)中对多标签图像中的嘈杂和缺失标签进行建模来实现这一目标,与之集成,形成端到端深度学习系统,该系统可以共同学习噪声分布和CNN参数。 NMN无需任何清洁训练数据就可以直接从嘈杂数据中了解噪声模式的分布。 NMN可以模拟仅取决于真标签的标签噪声,也可以取决于图像特征。我们表明,集成的NMN/CNN学习系统始终在MSR-Coco数据集和MSR-VTT数据集上对不同级别的标签噪声进行分类性能。我们还表明,使用多个实例学习方法时,将获得噪声性能的改进。
Multi-label image classification has generated significant interest in recent years and the performance of such systems often suffers from the not so infrequent occurrence of incorrect or missing labels in the training data. In this paper, we extend the state-of the-art of training classifiers to jointly deal with both forms of errorful data. We accomplish this by modeling noisy and missing labels in multi-label images with a new Noise Modeling Network (NMN) that follows our convolutional neural network (CNN), integrates with it, forming an end-to-end deep learning system, which can jointly learn the noise distribution and CNN parameters. The NMN learns the distribution of noise patterns directly from the noisy data without the need for any clean training data. The NMN can model label noise that depends only on the true label or is also dependent on the image features. We show that the integrated NMN/CNN learning system consistently improves the classification performance, for different levels of label noise, on the MSR-COCO dataset and MSR-VTT dataset. We also show that noise performance improvements are obtained when multiple instance learning methods are used.