论文标题

碰撞引起的饱和非线性培养基中快速2D孤子的振幅动力学,非线性损失较弱

Collision-induced amplitude dynamics of fast 2D solitons in saturable nonlinear media with weak nonlinear loss

论文作者

Nguyen, Quan M., Huynh, Toan T.

论文摘要

我们研究了由耦合的非线性schrödinger方程描述的二维(2D)孤子的振幅动力学,具有饱和的非线性和弱非线性损失。我们扩展了用于计算两个一维孤子的碰撞诱导的动力学的扰动技术,以在两个2D孤子的快速碰撞中得出碰撞诱导的振幅动力学的理论表达。我们的扰动方法基于两个主要步骤。第一步是用于计算扰动孤子的能量平衡的标准绝热扰动,第二步是至关重要的,是用于分析碰撞诱导的扰动2D Soliton信封的变化。此外,我们还介绍了碰撞诱导的振幅移位对两个2D碰撞 - 碰撞的角度的依赖性。此外,我们表明,当前的扰动技术可以简单地应用于在两个扰动的一维孤子的快速碰撞中碰撞引起的振幅变化。我们的分析计算通过数值模拟在存在立方体损失的情况下和存在五骨丢失的情况下具有相应的非线性schrödinger方程的数值模拟确认。

We study the amplitude dynamics of two-dimensional (2D) solitons in a fast collision described by the coupled nonlinear Schrödinger equations with a saturable nonlinearity and weak nonlinear loss. We extend the perturbative technique for calculating the collision-induced dynamics of two one-dimensional (1D) solitons to derive the theoretical expression for the collision-induced amplitude dynamics in a fast collision of two 2D solitons. Our perturbative approach is based on two major steps. The first step is the standard adiabatic perturbation for the calculations on the energy balance of perturbed solitons and the second step, which is the crucial one, is for the analysis of the collision-induced change in the envelope of the perturbed 2D soliton. Furthermore, we also present the dependence of the collision-induced amplitude shift on the angle of the two 2D colliding-solitons. In addition, we show that the current perturbative technique can be simply applied to study the collision-induced amplitude shift in a fast collision of two perturbed 1D solitons. Our analytic calculations are confirmed by numerical simulations with the corresponding coupled nonlinear Schrödinger equations in the presence of the cubic loss and in the presence of the quintic loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源