论文标题

多中心联合学习:客户聚类以更好的个性化

Multi-Center Federated Learning: Clients Clustering for Better Personalization

论文作者

Long, Guodong, Xie, Ming, Shen, Tao, Zhou, Tianyi, Wang, Xianzhi, Jiang, Jing, Zhang, Chengqi

论文摘要

联邦学习因其能力以分散的方式训练大型模型的能力而无需直接访问用户数据。它有助于保护用户的私人数据免受集中式收集。与分布式的机器学习不同,联合学习旨在解决来自各种现实世界应用(例如智能手机上的这些应用程序)中的非均质来源的非IID数据。现有的联合学习方法通​​常采用单个全球模型,以通过汇总其梯度来捕获所有用户的共享知识,而无论其数据分布之间的差异如何。但是,由于用户行为的多样性,将用户的梯度分配给不同的全局模型(即中心)可以更好地捕获用户跨用户数据分布的异质性。我们的论文提出了一种用于联合学习的新型多中心聚合机制,该机制从非IID用户数据中学习了多个全局模型,并同时得出了用户和中心之间的最佳匹配。我们将问题提出为关节优化,可以通过随机期望最大化(EM)算法有效地解决。我们在基准数据集上的实验结果表明,我们的方法的表现优于几种流行的联合学习方法。

Federated learning has received great attention for its capability to train a large-scale model in a decentralized manner without needing to access user data directly. It helps protect the users' private data from centralized collecting. Unlike distributed machine learning, federated learning aims to tackle non-IID data from heterogeneous sources in various real-world applications, such as those on smartphones. Existing federated learning approaches usually adopt a single global model to capture the shared knowledge of all users by aggregating their gradients, regardless of the discrepancy between their data distributions. However, due to the diverse nature of user behaviors, assigning users' gradients to different global models (i.e., centers) can better capture the heterogeneity of data distributions across users. Our paper proposes a novel multi-center aggregation mechanism for federated learning, which learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers. We formulate the problem as a joint optimization that can be efficiently solved by a stochastic expectation maximization (EM) algorithm. Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源