论文标题

低复合的偏光刚性del pezzo表面

Polarized rigid del Pezzo surfaces in low codimension

论文作者

Qureshi, Muhammad Imran

论文摘要

我们提供具有刚性的Orbifold del Pezzo表面的显式分级结构,并具有刚性的Orbifold类型$ \ left \ {K_I \ frac \ frac {1} {1} {r_i} {r_i}(1,a_i):3 \ le r_i \ le r_i \ le r_i \ le 10,k_i \ in \ z zzz _}形成良好的和准齿品种嵌入了一些加权的投影空间中。特别是,我们介绍了147个这样的表面的集合,即可以通过使用以下一组方程式来描述它们在反典型的嵌入下的形象:一个方程,两个线性独立的方程式,五个最大pfaffians $ 5 \ times 5 $ 5 $ skew Skew Sempew Symetric Matrix和Nine $ 2 \ time times 2 $ 2 $ 2 $ 2 $ 2 $ $ 2 $ 3 Squarrix 3 sarkrix。这是对环境加权射击空间的重量的某些精心选择的界面的完整分类,它主要基于使用计算机代数系统\ textsc {magma}的详细计算机辅助搜索。

We provide explicit graded constructions of orbifold del Pezzo surfaces with rigid orbifold points of type $\left\{k_i\times\frac{1}{r_i}(1,a_i): 3\le r_i \le 10,k_i \in \ZZ_{\ge 0}\right\}$; as well-formed and quasismooth varieties embedded in some weighted projective space. In particular, we present a collection of 147 such surfaces such that their image under their anti-canonical embeddings can be described by using one of the following sets of equations: a single equation, two linearly independent equations, five maximal Pfaffians of $5\times 5$ skew symmetric matrix, and nine $2\times 2$ minors of size 3 square matrix. This is a complete classification of such surfaces under certain carefully chosen bounds on the weights of ambient weighted projective spaces and it is largely based on detailed computer-assisted searches by using the computer algebra system \textsc{magma}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源