论文标题
$ r^2 $重力与线性痕量术语中的虫洞建模
Wormhole modeling in $R^2$ gravity with linear trace term
论文作者
论文摘要
Morris和Thorne \ Cite {Morris1}使用爱因斯坦一般的相对论概念提出了可遍历的虫洞,假设的连接工具。在本文中,考虑了一般相对性的修改(特别是$ f(r,t)$重力理论,由Harko等人定义的重力理论\ cite {harko})研究了可遍历的虫洞溶液。函数$ f(r,t)$被认为是$ f(r,t)= r+αr^2+βT$,其中$α$和$β$是控制参数。出现在虫洞结构指标中的形状和红移函数在虫洞溶液的发展中具有重要贡献。我们已经考虑了具有对数形状函数的变量和恒定红移函数。检查了能量条件,分析了几何构型,并确定喉咙的半径,以便在没有外来物质的情况下具有蠕虫溶液。
Morris and Thorne \cite{morris1} proposed traversable wormholes, hypothetical connecting tools, using the concept of Einstein's general theory of relativity. In this paper, the modification of general relativity (in particular $f(R,T)$ theory of gravity defined by Harko et al. \cite{harko}) is considered, to study the traversable wormhole solutions. The function $f(R,T)$ is considered as $f(R,T)=R+αR^2+βT$, where $α$ and $β$ are controlling parameters. The shape and red shift functions appearing in the metric of wormhole structure have significant contribution in the development of wormhole solutions. We have considered both variable and constant red shift functions with a logarithmic shape function. The energy conditions are examined, geometric configuration is analyzed and the radius of the throat is determined in order to have wormhole solutions in absence of exotic matter.