论文标题
与非负定功能流向卡兹丹 - 瓦纳方程的全球存在和融合
Global existence and convergence of a flow to Kazdan-Warner equation with non-negative prescribed function
论文作者
论文摘要
我们考虑与封闭的Riemann Surface $(σ,G)$上的Kazdan-Warner方程相关的进化问题 \ begin {align*} -Δ_{g} u =8π\ left(\ frac {he^{u}} {\int_σhe^{ \ end {align*}其中规定的函数$ h \ geq0 $和$ \max_σh> 0 $。我们在其他假设(例如 \ begin {align*} δ_{g} \ ln H(p_0)+8π-2K(p_0)> 0 \ end {align*}对于任何最大点$ p_0 $ $ 2 \ ln H $的总和的$ p_0 $和绿色功能的常规部分,其中$ k $是$ n是$σ$的高斯曲率。特别是,这给出了Yang和Zhu [Proc。阿米尔。数学。 Soc。 145(2017),没有。 9,3953-3959],它概括了丁,Jost,Li和Wang的存在结果[Asian J. Math。 1(1997),没有。 2,230-248]到非负定的功能案例。
We consider an evolution problem associated to the Kazdan-Warner equation on a closed Riemann surface $(Σ,g)$ \begin{align*} -Δ_{g}u=8π\left(\frac{he^{u}}{\int_Σhe^{u}{\rm d}μ_{g}}-\frac{1}{\int_Σ{\rm d}μ_{g}}\right) \end{align*} where the prescribed function $h\geq0$ and $\max_Σh>0$. We prove the global existence and convergence under additional assumptions such as \begin{align*} Δ_{g}\ln h(p_0)+8π-2K(p_0)>0 \end{align*} for any maximum point $p_0$ of the sum of $2\ln h$ and the regular part of the Green function, where $K$ is the Gaussian curvature of $Σ$. In particular, this gives a new proof of the existence result by Yang and Zhu [Proc. Amer. Math. Soc. 145 (2017), no. 9, 3953-3959] which generalizes existence result of Ding, Jost, Li and Wang [Asian J. Math. 1 (1997), no. 2, 230-248] to the non-negative prescribed function case.