论文标题

让我选择:从言语上下文到字体选择

Let Me Choose: From Verbal Context to Font Selection

论文作者

Shirani, Amirreza, Dernoncourt, Franck, Echevarria, Jose, Asente, Paul, Lipka, Nedim, Solorio, Thamar

论文摘要

在本文中,我们旨在学习字体的视觉属性与通常应用的文本的言语上下文之间的关联。与利用周围视觉上下文的相关工作相比,我们选择仅关注输入文本,因为这可以启用文本是文档中唯一的视觉元素的新应用程序。我们介绍了一个新的数据集,其中包含社交媒体帖子和广告中不同主题的示例,并通过众包标记。由于任务的主观性质,对于输入文本来说,多个字体可能被认为是可以接受的,这使此问题具有挑战性。为此,我们研究了不同的端到端模型,以了解人群数据的标签分布并在所有注释中捕获主体间率。

In this paper, we aim to learn associations between visual attributes of fonts and the verbal context of the texts they are typically applied to. Compared to related work leveraging the surrounding visual context, we choose to focus only on the input text as this can enable new applications for which the text is the only visual element in the document. We introduce a new dataset, containing examples of different topics in social media posts and ads, labeled through crowd-sourcing. Due to the subjective nature of the task, multiple fonts might be perceived as acceptable for an input text, which makes this problem challenging. To this end, we investigate different end-to-end models to learn label distributions on crowd-sourced data and capture inter-subjectivity across all annotations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源