论文标题

PGLP:可自定义和严格的位置隐私通过策略图

PGLP: Customizable and Rigorous Location Privacy through Policy Graph

论文作者

Cao, Yang, Xiao, Yonghui, Takagi, Shun, Xiong, Li, Yoshikawa, Masatoshi, Shen, Yilin, Liu, Jinfei, Jin, Hongxia, Xu, Xiaofeng

论文摘要

位置隐私已在文献中进行了广泛的研究。但是,现有的位置隐私模型要么不是严格或不可自定义的,这限制了许多现实世界应用中隐私与实用程序之间的权衡。为了解决此问题,我们提出了一个新的位置隐私概念,称为pglp,即\ textit {基于策略图的位置隐私},提供了一个丰富的接口,以发布具有可自定义和严格的隐私保证的私人位置。首先,我们通过扩展差异隐私来设计PGLP的隐私指标。具体来说,我们使用\ textit {位置策略图}对用户的位置隐私要求进行形式化,该要求具有表达和可自定义。其次,我们研究了如何在对抗知识下满足任意给定的位置策略图。我们发现,当攻击者知道用户的移动性模式时,位置策略图可能并不总是可行的,并且可能会遭受\ textit {位置曝光}。我们提出了有效的方法来检测位置暴露并使用最佳实用程序修复策略图。第三,我们设计了一个私人位置痕迹释放框架,该框架可以使用可自定义且严格的位置隐私的位置曝光,策略图修复和私人轨迹释放的检测。最后,我们对现实数据集进行实验,以验证隐私 - 实用性权衡的有效性和拟议算法的效率。

Location privacy has been extensively studied in the literature. However, existing location privacy models are either not rigorous or not customizable, which limits the trade-off between privacy and utility in many real-world applications. To address this issue, we propose a new location privacy notion called PGLP, i.e., \textit{Policy Graph based Location Privacy}, providing a rich interface to release private locations with customizable and rigorous privacy guarantee. First, we design the privacy metrics of PGLP by extending differential privacy. Specifically, we formalize a user's location privacy requirements using a \textit{location policy graph}, which is expressive and customizable. Second, we investigate how to satisfy an arbitrarily given location policy graph under adversarial knowledge. We find that a location policy graph may not always be viable and may suffer \textit{location exposure} when the attacker knows the user's mobility pattern. We propose efficient methods to detect location exposure and repair the policy graph with optimal utility. Third, we design a private location trace release framework that pipelines the detection of location exposure, policy graph repair, and private trajectory release with customizable and rigorous location privacy. Finally, we conduct experiments on real-world datasets to verify the effectiveness of the privacy-utility trade-off and the efficiency of the proposed algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源