论文标题
跨度程序和量子时间复杂性
Span programs and quantum time complexity
论文作者
论文摘要
跨度程序是量子计算的重要模型,因为它们与量子查询复杂性的紧密对应关系。对于任何决策问题$ f $,$ f $的跨度程序的最小复杂性与$ f $的量子查询复杂性相同,最多是一个恒定因素。而且,这种对应关系是建设性的。带有复杂性$ c $的$ f $的跨度程序可以将其编译成具有查询复杂性$ o(c)$的$ f $的有限错误量子算法,反之亦然。 在这项工作中,我们证明了量子时间复杂性的类似连接。特别是,我们展示了如何将$ f $的量子算法与时间复杂性$ t $一起转换为$ f $的跨度程序,以便将其汇回成$ f $的量子算法,并使用$ f $,并使用时间复杂性$ \ wideTilde {o} {o}(o}(t)$。虽然从SPAN程序中获得的量子算法的查询复杂性得到了很好的理解,但通常不清楚如何以时间效率的方式实施某些独立的操作。我们表明,对于从算法中衍生的跨度程序,我们可以在实施跨度程序时保留时间效率。这尤其意味着跨越程序不仅完全捕获量子查询复杂性,还可以完全捕获量子时间复杂性。 能够以保留时间复杂性的方式将量子算法转换为跨度程序的一个实际优势是,跨度程序构成非常好。我们通过使用我们的范围构图来改善Ambainis的可变时间量子搜索结果来证明这一点。
Span programs are an important model of quantum computation due to their tight correspondence with quantum query complexity. For any decision problem $f$, the minimum complexity of a span program for $f$ is equal, up to a constant factor, to the quantum query complexity of $f$. Moreover, this correspondence is constructive. A span program for $f$ with complexity $C$ can be compiled into a bounded error quantum algorithm for $f$ with query complexity $O(C)$, and vice versa. In this work, we prove an analogous connection for quantum time complexity. In particular, we show how to convert a quantum algorithm for $f$ with time complexity $T$ into a span program for $f$ such that it compiles back into a quantum algorithm for $f$ with time complexity $\widetilde{O}(T)$. While the query complexity of quantum algorithms obtained from span programs is well-understood, it is not generally clear how to implement certain query-independent operations in a time-efficient manner. We show that for span programs derived from algorithms with a time-efficient implementation, we can preserve the time efficiency when implementing the span program. This means in particular that span programs not only fully capture quantum query complexity, but also quantum time complexity. One practical advantage of being able to convert quantum algorithms to span programs in a way that preserves time complexity is that span programs compose very nicely. We demonstrate this by improving Ambainis's variable-time quantum search result using our construction through a span program composition for the OR function.