论文标题

语言模型和人类对Winograd模式扰动的敏感性

The Sensitivity of Language Models and Humans to Winograd Schema Perturbations

论文作者

Abdou, Mostafa, Ravishankar, Vinit, Barrett, Maria, Belinkov, Yonatan, Elliott, Desmond, Søgaard, Anders

论文摘要

大规模预处理的语言模型是Winograd模式挑战赛的最新性能改善的主要推动力,这是对常识推理能力的广泛使用的测试。但是,我们通过一个新的诊断数据集证明了这些模型对微小影响人类理解的Winograd示例的语言扰动敏感。我们的结果突出了人类和语言模型之间有趣的差异:语言模型对数字或性别替代的替代替代品比人类更敏感,并且人类的预测更加稳定,更稳定,保持更高的绝对性能,并且在非缔合实例上的表现要比关联效率更高。总体而言,人类比开箱即用的模型更正确,并且由于错误的原因,这些模型有时是正确的。最后,我们表明,对大型任务数据集进行微调可以为这些问题提供解决方案。

Large-scale pretrained language models are the major driving force behind recent improvements in performance on the Winograd Schema Challenge, a widely employed test of common sense reasoning ability. We show, however, with a new diagnostic dataset, that these models are sensitive to linguistic perturbations of the Winograd examples that minimally affect human understanding. Our results highlight interesting differences between humans and language models: language models are more sensitive to number or gender alternations and synonym replacements than humans, and humans are more stable and consistent in their predictions, maintain a much higher absolute performance, and perform better on non-associative instances than associative ones. Overall, humans are correct more often than out-of-the-box models, and the models are sometimes right for the wrong reasons. Finally, we show that fine-tuning on a large, task-specific dataset can offer a solution to these issues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源