论文标题

同步确定性推挤自动机可能真的很难

Synchronizing Deterministic Push-Down Automata Can Be Really Hard

论文作者

Fernau, Henning, Wolf, Petra, Yamakami, Tomoyuki

论文摘要

确定性有限的自动机是否可以在多项式时间内回答以所谓同步单词的形式重置软件。在本文中,我们将此算法问题扩展到有限自动机之外的确定性自动机。我们证明,即使查看确定性的单场自动机,同步性问题也是不可决定的。对于确定性的一转推自动机的另一种经典轻度扩展,也是如此的经典轻度扩展。但是,当我们结合这两个限制时,我们会以Pspace complete(因此可以决定)的同步性问题到达场景。同样,我们解决了(部分)盲目的确定性计数器自动机的可确定性问题。 关于确定性推动自动机应该意味着什么意味着什么,有几种解释。这取决于堆栈的作用:它应该在同步时是空的吗,应该始终是相同的还是任意的?对于本文研究的自动机类别,同步性问题的复杂性或可确定性状态主要独立于这种技术性,但是我们还讨论了一类自动机,这会有所作为。

The question if a deterministic finite automaton admits a software reset in the form of a so-called synchronizing word can be answered in polynomial time. In this paper, we extend this algorithmic question to deterministic automata beyond finite automata. We prove that the question of synchronizability becomes undecidable even when looking at deterministic one-counter automata. This is also true for another classical mild extension of regularity, namely that of deterministic one-turn push-down automata. However, when we combine both restrictions, we arrive at scenarios with a PSPACE-complete (and hence decidable) synchronizability problem. Likewise, we arrive at a decidable synchronizability problem for (partially) blind deterministic counter automata. There are several interpretations of what synchronizability should mean for deterministic push-down automata. This is depending on the role of the stack: should it be empty on synchronization, should it be always the same or is it arbitrary? For the automata classes studied in this paper, the complexity or decidability status of the synchronizability problem is mostly independent of this technicality, but we also discuss one class of automata where this makes a difference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源