论文标题
引导持续的贝蒂数字和其他稳定统计数据
Bootstrapping Persistent Betti Numbers and Other Stabilizing Statistics
论文作者
论文摘要
本贡献调查了多元自举程序,以进行一般稳定统计数据,并在拓扑数据分析中进行了特定的应用。拓扑统计的现有限制定理被证明在构建置信区间的实践中很难使用,从而激发了以这种能力使用引导程序。但是,在某些情况下,标准的非参数引导程序并未直接提供渐近有效的置信区间。取而代之的是,平滑的引导程序被证明可以在这些设置中给出一致的估计。目前的工作与稳定统计的领域的其他一般结果有关,包括关键制度中泊松功能和二项式过程的中心限制定理。考虑的具体统计数据包括$ \ m rathbb r^d $的点集的čech和越野式搭配的持续betti数字,以及欧拉的特征,以及$ k $ near的邻居图的总边缘长度。始终特别强调削弱建立自举一致性所需的必要条件。特别是,不需要连续的潜在密度的假设。提供了一项仿真研究,以评估有限样本大小的平滑引导程序的性能,并将该方法进一步应用于Sloan Digital Sky Survey(SDSS)的宇宙Web数据集。源代码可在github.com/btroycraft/stabilizing_statistics_bootstrap上获得。
The present contribution investigates multivariate bootstrap procedures for general stabilizing statistics, with specific application to topological data analysis. Existing limit theorems for topological statistics prove difficult to use in practice for the construction of confidence intervals, motivating the use of the bootstrap in this capacity. However, the standard nonparametric bootstrap does not directly provide for asymptotically valid confidence intervals in some situations. A smoothed bootstrap procedure, instead, is shown to give consistent estimation in these settings. The present work relates to other general results in the area of stabilizing statistics, including central limit theorems for functionals of Poisson and Binomial processes in the critical regime. Specific statistics considered include the persistent Betti numbers of Čech and Vietoris-Rips complexes over point sets in $\mathbb R^d$, along with Euler characteristics, and the total edge length of the $k$-nearest neighbor graph. Special emphasis is made throughout to weakening the necessary conditions needed to establish bootstrap consistency. In particular, the assumption of a continuous underlying density is not required. A simulation study is provided to assess the performance of the smoothed bootstrap for finite sample sizes, and the method is further applied to the cosmic web dataset from the Sloan Digital Sky Survey (SDSS). Source code is available at github.com/btroycraft/stabilizing_statistics_bootstrap.