论文标题
Stackgenvis:使用性能指标的数据,算法和堆叠集合学习模型的对齐
StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics
论文作者
论文摘要
在机器学习(ML)中,诸如包装,增强和堆叠之类的集合方法是广泛建立的方法,可以定期实现一流的预测性能。堆叠(也称为“堆积的概括”)是一种集成方法,它结合了异质基本模型,至少以一层排列,然后采用另一个metamodel来总结这些模型的预测。尽管这可能是提高ML预测性能的高效方法,但是从头开始生成一堆模型可能是一个繁琐的反复试验过程。这项挑战源于可用解决方案的巨大空间,具有可用于培训的不同数据实例和功能集,多种算法可供选择,以及使用不同的参数(即模型)对这些算法进行实例化,这些算法根据各种指标进行了不同的性能。在这项工作中,我们提出了一种知识生成模型,该模型通过使用可视化来支持集合学习,以及用于堆叠概括的视觉分析系统。我们的系统,Stackgenvis,可帮助用户动态调整性能指标,管理数据实例,为给定数据集选择最重要的功能,选择一组表现最好和多样化的算法以及衡量预测性能。因此,我们提出的工具可以通过删除过度强调和表现不佳的模型来帮助用户在不同的模型之间做出决定,并减少所得堆栈的复杂性。两种用例证明了Stackgenvis的适用性和有效性:现实世界中的医疗保健数据集以及与文本中的情感/立场检测有关的数据集。最后,该工具通过对三位ML专家的访谈进行了评估。
In machine learning (ML), ensemble methods such as bagging, boosting, and stacking are widely-established approaches that regularly achieve top-notch predictive performance. Stacking (also called "stacked generalization") is an ensemble method that combines heterogeneous base models, arranged in at least one layer, and then employs another metamodel to summarize the predictions of those models. Although it may be a highly-effective approach for increasing the predictive performance of ML, generating a stack of models from scratch can be a cumbersome trial-and-error process. This challenge stems from the enormous space of available solutions, with different sets of data instances and features that could be used for training, several algorithms to choose from, and instantiations of these algorithms using diverse parameters (i.e., models) that perform differently according to various metrics. In this work, we present a knowledge generation model, which supports ensemble learning with the use of visualization, and a visual analytics system for stacked generalization. Our system, StackGenVis, assists users in dynamically adapting performance metrics, managing data instances, selecting the most important features for a given data set, choosing a set of top-performant and diverse algorithms, and measuring the predictive performance. In consequence, our proposed tool helps users to decide between distinct models and to reduce the complexity of the resulting stack by removing overpromising and underperforming models. The applicability and effectiveness of StackGenVis are demonstrated with two use cases: a real-world healthcare data set and a collection of data related to sentiment/stance detection in texts. Finally, the tool has been evaluated through interviews with three ML experts.